Menu Close

Total-sum-of-this-below-infinite-series-1-1-1-2-1-2-3-1-3-4-1-n-n-1-2-0-6-0-06-0-006-6-10-n-




Question Number 91796 by zainal tanjung last updated on 03/May/20
Total sum of this below infinite series :  1).  (1/(1×2))+(1/(2×3))+(1/(3×4))+...(1/(n(n+1)))=...  2).  0.6+0.06+0.006+...(6/(10^n ))=...
Totalsumofthisbelowinfiniteseries:1).11×2+12×3+13×4+1n(n+1)=2).0.6+0.06+0.006+610n=
Commented by mathmax by abdo last updated on 04/May/20
2) S =Σ_(k=1) ^n  (6/(10^k )) =(6/(10))Σ_(k=1) ^n  (1/(10^(k−1) )) =(6/(10)) Σ_(p=0) ^(n−1)  ((1/(10)))^p   =(6/(10))×((1−((1/(10)))^n )/(1−(1/(10)))) =(6/(10))×((10)/9)(1−(1/(10^n ))) =(2/3)(1−(1/(10^n )))  =(2/3)−(2/(3.10^n ))
2)S=k=1n610k=610k=1n110k1=610p=0n1(110)p=610×1(110)n1110=610×109(1110n)=23(1110n)=2323.10n
Answered by $@ty@m123 last updated on 03/May/20
(1) 1−(1/2)+(1/2)−(1/3)+......+(1/(n−1))−(1/n)+(1/n)−(1/(n+1))  =1−(1/(n+1))=(n/(n+1))  (2)a=0.6, r=0.1   ∴ S_(n−1) =((a(1−r^n ))/(1−r))  =((0.6(1−0.1^n ))/(1−0.1))  =((0.6(1−0.1^n ))/(0.9))  =((2(1−0.1^n ))/3)
(1)112+1213++1n11n+1n1n+1=11n+1=nn+1(2)a=0.6,r=0.1Sn1=a(1rn)1r=0.6(10.1n)10.1=0.6(10.1n)0.9=2(10.1n)3

Leave a Reply

Your email address will not be published. Required fields are marked *