Question Number 192046 by sciencestudentW last updated on 06/May/23
$${tow}\:{type}\:{creams}\:{are}\:{in}\:{a}\:{box}\:{that}\:{one}\: \\ $$$${type}\:{of}\:{these}\:{have}\:\mathrm{25}{gr}\:{mass}\:{and}\:{another} \\ $$$${ones}\:{have}\:\mathrm{37}{gr}\:{mass},\:{if}\:{the}\:{total}\:{mass} \\ $$$${of}\:{those}\:{is}\:\mathrm{870}{gr}\:{then}\:{find}\:{the}\:{number} \\ $$$${of}\:{each}\:{type}\:{of}\:{creams}. \\ $$
Answered by Skabetix last updated on 06/May/23
$$\mathrm{37}×\mathrm{10}+\mathrm{20}×\mathrm{25}=\mathrm{870} \\ $$$$\rightarrow\mathrm{20}\:{of}\:{type}\:\mathrm{1}\:{and}\:\mathrm{10}\:{of}\:{type}\:\mathrm{2} \\ $$
Commented by sciencestudentW last updated on 07/May/23
$${if}\:{the}\:{total}\:{number}\:{of}\:{creams}\:{are}\:\mathrm{30}\:{in} \\ $$$${a}\:{box}\:{then}\:{how}\:{we}\:{can}\:{solve}\:{by}\:{equation}? \\ $$
Answered by Skabetix last updated on 07/May/23
$${We}\:{have}\:\mathrm{25}{x}+\mathrm{37}{y}=\mathrm{870}\:{and}\:{x}+{y}=\mathrm{30} \\ $$$$\Leftrightarrow{x}=\mathrm{30}−{y} \\ $$$$\Leftrightarrow\mathrm{25}\left(\mathrm{30}−{y}\right)+\mathrm{37}{y}=\mathrm{870} \\ $$$$\Leftrightarrow\mathrm{750}−\mathrm{25}{y}+\mathrm{37}{y}=\mathrm{870} \\ $$$$\Leftrightarrow\mathrm{12}{y}=\mathrm{870}−\mathrm{750}=\mathrm{120} \\ $$$$\Leftrightarrow{y}=\frac{\mathrm{120}}{\mathrm{12}}=\mathrm{10} \\ $$$$ \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{30} \\ $$$$\Leftrightarrow{x}+\mathrm{10}=\mathrm{30} \\ $$$${x}=\mathrm{30}−\mathrm{10}=\mathrm{20} \\ $$$$\rightarrow\:\mathrm{20}\:{of}\:{type}\:\mathrm{1}\:{and}\:\mathrm{10}\:{of}\:{type}\:\mathrm{2} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by sciencestudentW last updated on 07/May/23
$${thanks}\:{a}\:{lot} \\ $$