Menu Close

Towns-A-B-C-and-D-are-located-on-the-vertices-of-a-square-whose-area-is-1000km-2-There-is-a-straight-line-highway-passing-through-the-centre-of-the-square-but-not-through-any-of-the-towns-Find-the-




Question Number 111278 by Aina Samuel Temidayo last updated on 03/Sep/20
Towns A,B,C and D are located on  the vertices of a square whose area is  1000km^2 . There is a straight line  highway passing through the centre of  the square but not through any of the  towns. Find the sum of the squares  of the distances of the towns to the  highway.
$$\mathrm{Towns}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{and}\:\mathrm{D}\:\mathrm{are}\:\mathrm{located}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}\:\mathrm{whose}\:\mathrm{area}\:\mathrm{is} \\ $$$$\mathrm{1000km}^{\mathrm{2}} .\:\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\mathrm{highway}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{square}\:\mathrm{but}\:\mathrm{not}\:\mathrm{through}\:\mathrm{any}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{towns}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{squares} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{distances}\:\mathrm{of}\:\mathrm{the}\:\mathrm{towns}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{highway}. \\ $$
Answered by ajfour last updated on 03/Sep/20
Commented by Aina Samuel Temidayo last updated on 03/Sep/20
Solution please?
$$\mathrm{Solution}\:\mathrm{please}? \\ $$
Commented by ajfour last updated on 03/Sep/20
p+q=asin θ  p−q=acos θ  d_A ^2 +d_B ^2 +d_C ^2 +d_D ^2 = q^2 +p^2 +q^2 +p^2       = 2(p^2 +q^2 ) = (asin θ)^2 +(acos θ)^2       = a^2  = 1000km^2  .
$${p}+{q}={a}\mathrm{sin}\:\theta \\ $$$${p}−{q}={a}\mathrm{cos}\:\theta \\ $$$${d}_{{A}} ^{\mathrm{2}} +{d}_{{B}} ^{\mathrm{2}} +{d}_{{C}} ^{\mathrm{2}} +{d}_{{D}} ^{\mathrm{2}} =\:{q}^{\mathrm{2}} +{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{p}^{\mathrm{2}} \\ $$$$\:\:\:\:=\:\mathrm{2}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\:=\:\left({a}\mathrm{sin}\:\theta\right)^{\mathrm{2}} +\left({a}\mathrm{cos}\:\theta\right)^{\mathrm{2}} \\ $$$$\:\:\:\:=\:{a}^{\mathrm{2}} \:=\:\mathrm{1000}{km}^{\mathrm{2}} \:. \\ $$
Commented by Aina Samuel Temidayo last updated on 03/Sep/20
Ok. Thanks. I really appreciate that.
$$\mathrm{Ok}.\:\mathrm{Thanks}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{that}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *