Menu Close

Trace-the-changes-in-the-sign-and-magnitude-of-sin-3-cos-2-as-the-angle-increases-from-0-to-pi-2-also-find-its-minimum-and-maximum-values-




Question Number 58025 by Kunal12588 last updated on 16/Apr/19
Trace the changes in the sign and magnitude  of  ((sin 3θ)/(cos 2θ)) as the angle increases from 0 to (π/2).  also find its minimum and maximum values.
Tracethechangesinthesignandmagnitudeofsin3θcos2θastheangleincreasesfrom0toπ2.alsofinditsminimumandmaximumvalues.
Commented by Kunal12588 last updated on 16/Apr/19
Answered by tanmay last updated on 16/Apr/19
(π/2)≥θ≥0  π≥2θ≥0  ((3π)/2)≥3θ≥0       A)    sin3θ=+ve   (π/6)≥θ≥0              cos2θ=+ve           so   ((sin3θ)/(cos2θ))=+ve  when (π/6)≥θ≥0  B)   sin3θ=+ve      [when (π/4)> θ≥(π/6)              cos2θ=+ve           ((sin3θ)/(cos2θ))=++ve  c)sin3θ=     +ve    when  (π/3)≥θ>(π/4)         cos2θ=−ve       ((sin3θ)/(cos2θ))=−ve  d)sin3θ=  −ve     (π/2)≥θ≥(π/3)       cos2θ=−ve  so ((sin3θ)/(cos2θ))=+ve  pls check...    f(θ)=((sin3θ)/(cos2θ))  (df/dθ)=((cos2θ×3cos3θ+2sin3θ×sin2θ)/(cos^2 2θ))  (df/dθ)=((cos2θ×cos3θ+2cos(3θ−2θ))/(cos^2 2θ))  (df/dθ)=((cos3θ×cos2θ+2cosθ)/(cos^2 2θ))  for max/min (df/dθ)=0  cos3θ×cos2θ+2cosθ  (4x^3 −3x)(2x^2 −1)+2x  8x^5 −4x^3 −6x^3 +3x+2x  8x^5 −10x^3 +5x  x(8x^4 −10x^2 +5)  x{2(4x^4 −5x^2 )+5}  x[2{(2x^2 )^2 −2×2x^2 ×(5/4)+((25)/(16))−((25)/(16))}+5]  x[2(2x^2 −(5/4))^2 −((25)/8)+5]  x[2(2x^2 −(5/4))^2 +((15)/8)]  so [2(2x^2 −(5/4))^2 +((15)/8)]≠0  hence 8x^5 −10x^3 +5x=0 when x=0  cosθ=0=cos(π/2)  [θ=(π/2)]  f((π/2))=((sin(((3π)/2)))/(cos(((2π)/2))))=((−1)/(−1))=1(maximum value)  f(0)=((sin(3×0))/(cos(2×0)))=0
π2θ0π2θ03π23θ0A)sin3θ=+veπ6θ0cos2θ=+vesosin3θcos2θ=+vewhenπ6θ0B)sin3θ=+ve[whenπ4>θπ6cos2θ=+vesin3θcos2θ=++vec)sin3θ=+vewhenπ3θ>π4cos2θ=vesin3θcos2θ=ved)sin3θ=veπ2θπ3cos2θ=vesosin3θcos2θ=+veplscheckf(θ)=sin3θcos2θdfdθ=cos2θ×3cos3θ+2sin3θ×sin2θcos22θdfdθ=cos2θ×cos3θ+2cos(3θ2θ)cos22θdfdθ=cos3θ×cos2θ+2cosθcos22θformax/mindfdθ=0cos3θ×cos2θ+2cosθ(4x33x)(2x21)+2x8x54x36x3+3x+2x8x510x3+5xx(8x410x2+5)x{2(4x45x2)+5}x[2{(2x2)22×2x2×54+25162516}+5]x[2(2x254)2258+5]x[2(2x254)2+158]so[2(2x254)2+158]0hence8x510x3+5x=0whenx=0cosθ=0=cosπ2[θ=π2]f(π2)=sin(3π2)cos(2π2)=11=1(maximumvalue)f(0)=sin(3×0)cos(2×0)=0
Commented by Kunal12588 last updated on 17/Apr/19
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *