Trace-the-changes-in-the-sign-and-magnitude-of-sin-3-cos-2-as-the-angle-increases-from-0-to-pi-2-also-find-its-minimum-and-maximum-values- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 58025 by Kunal12588 last updated on 16/Apr/19 Tracethechangesinthesignandmagnitudeofsin3θcos2θastheangleincreasesfrom0toπ2.alsofinditsminimumandmaximumvalues. Commented by Kunal12588 last updated on 16/Apr/19 Answered by tanmay last updated on 16/Apr/19 π2⩾θ⩾0π⩾2θ⩾03π2⩾3θ⩾0A)sin3θ=+veπ6⩾θ⩾0cos2θ=+vesosin3θcos2θ=+vewhenπ6⩾θ⩾0B)sin3θ=+ve[whenπ4>θ⩾π6cos2θ=+vesin3θcos2θ=++vec)sin3θ=+vewhenπ3⩾θ>π4cos2θ=−vesin3θcos2θ=−ved)sin3θ=−veπ2⩾θ⩾π3cos2θ=−vesosin3θcos2θ=+veplscheck…f(θ)=sin3θcos2θdfdθ=cos2θ×3cos3θ+2sin3θ×sin2θcos22θdfdθ=cos2θ×cos3θ+2cos(3θ−2θ)cos22θdfdθ=cos3θ×cos2θ+2cosθcos22θformax/mindfdθ=0cos3θ×cos2θ+2cosθ(4x3−3x)(2x2−1)+2x8x5−4x3−6x3+3x+2x8x5−10x3+5xx(8x4−10x2+5)x{2(4x4−5x2)+5}x[2{(2x2)2−2×2x2×54+2516−2516}+5]x[2(2x2−54)2−258+5]x[2(2x2−54)2+158]so[2(2x2−54)2+158]≠0hence8x5−10x3+5x=0whenx=0cosθ=0=cosπ2[θ=π2]f(π2)=sin(3π2)cos(2π2)=−1−1=1(maximumvalue)f(0)=sin(3×0)cos(2×0)=0 Commented by Kunal12588 last updated on 17/Apr/19 thankyousir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-n-1-1-n-H-n-n-2-2-1-Next Next post: Question-189101 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.