Menu Close

trace-the-curve-y-2-x-1-x-2-3-x-clearly-stating-all-the-properties-used-for-tracing-




Question Number 25656 by rita1608 last updated on 12/Dec/17
trace the curve   y^2 (x+1)=x^2 (3−x)  clearly stating all the properties used  for tracing.
$${trace}\:{the}\:{curve}\: \\ $$$${y}^{\mathrm{2}} \left({x}+\mathrm{1}\right)={x}^{\mathrm{2}} \left(\mathrm{3}−{x}\right) \\ $$$${clearly}\:{stating}\:{all}\:{the}\:{properties}\:{used} \\ $$$${for}\:{tracing}. \\ $$
Commented by ajfour last updated on 12/Dec/17
Commented by ajfour last updated on 12/Dec/17
y^2 =((x^2 (3−x))/(x+1))  > 0  ⇒   (x−3)(x+1) < 0        so x∈ (−1, 3]  as x→ −1   , y→±∞  double root at x=0 .  symmetry about x-axis coz of y^2 .
$${y}^{\mathrm{2}} =\frac{{x}^{\mathrm{2}} \left(\mathrm{3}−{x}\right)}{{x}+\mathrm{1}}\:\:>\:\mathrm{0} \\ $$$$\Rightarrow\:\:\:\left({x}−\mathrm{3}\right)\left({x}+\mathrm{1}\right)\:<\:\mathrm{0} \\ $$$$\:\:\:\:\:\:{so}\:{x}\in\:\left(−\mathrm{1},\:\mathrm{3}\right] \\ $$$${as}\:{x}\rightarrow\:−\mathrm{1}\:\:\:,\:{y}\rightarrow\pm\infty \\ $$$${double}\:{root}\:{at}\:{x}=\mathrm{0}\:. \\ $$$${symmetry}\:{about}\:{x}-{axis}\:{coz}\:{of}\:{y}^{\mathrm{2}} . \\ $$
Commented by rita1608 last updated on 13/Dec/17
its a 10 mark question plss state all  properties
$${its}\:{a}\:\mathrm{10}\:{mark}\:{question}\:{plss}\:{state}\:{all} \\ $$$${properties}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *