Menu Close

transform-tanp-tanq-then-find-the-value-of-k-1-n-1-cos-k-cos-k-1-R-




Question Number 28608 by abdo imad last updated on 27/Jan/18
transform tanp−tanq then find the value of   Σ_(k=1) ^n    (1/(cos(kθ)cos((k+1)θ)) .  θ∈R.
$${transform}\:{tanp}−{tanq}\:{then}\:{find}\:{the}\:{value}\:{of}\: \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{cos}\left({k}\theta\right){cos}\left(\left({k}+\mathrm{1}\right)\theta\right.}\:.\:\:\theta\in{R}. \\ $$
Answered by Tinkutara last updated on 28/Jan/18
(1/(cos kθcos (k+1)θ))  =((cos [(k+1)θ−kθ])/(cos kθcos (k+1)θcos θ))  =((cos (k+1)θcos θ+sin (k+1)θsin θ)/(cos kθcos (k+1)θcos θ))  =((1+tan (k+1)θtan θ)/(cos θ))  =((tan (k+1)θ−tan θ)/(sin θ))  Telescoping it becomes  Σ_(k=1) ^n ((tan (k+1)θ−tan θ)/(sin θ))  =((tan (n+1)θ−tan θ)/(sin θ))
$$\frac{\mathrm{1}}{\mathrm{cos}\:{k}\theta\mathrm{cos}\:\left({k}+\mathrm{1}\right)\theta} \\ $$$$=\frac{\mathrm{cos}\:\left[\left({k}+\mathrm{1}\right)\theta−{k}\theta\right]}{\mathrm{cos}\:{k}\theta\mathrm{cos}\:\left({k}+\mathrm{1}\right)\theta\mathrm{cos}\:\theta} \\ $$$$=\frac{\mathrm{cos}\:\left({k}+\mathrm{1}\right)\theta\mathrm{cos}\:\theta+\mathrm{sin}\:\left({k}+\mathrm{1}\right)\theta\mathrm{sin}\:\theta}{\mathrm{cos}\:{k}\theta\mathrm{cos}\:\left({k}+\mathrm{1}\right)\theta\mathrm{cos}\:\theta} \\ $$$$=\frac{\mathrm{1}+\mathrm{tan}\:\left({k}+\mathrm{1}\right)\theta\mathrm{tan}\:\theta}{\mathrm{cos}\:\theta} \\ $$$$=\frac{\mathrm{tan}\:\left({k}+\mathrm{1}\right)\theta−\mathrm{tan}\:\theta}{\mathrm{sin}\:\theta} \\ $$$${Telescoping}\:{it}\:{becomes} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{tan}\:\left({k}+\mathrm{1}\right)\theta−\mathrm{tan}\:\theta}{\mathrm{sin}\:\theta} \\ $$$$=\frac{\mathrm{tan}\:\left({n}+\mathrm{1}\right)\theta−\mathrm{tan}\:\theta}{\mathrm{sin}\:\theta} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *