Menu Close

transform-the-cartesian-inyegral-0-1-0-1-x-2-e-x-2-y-2-dy-dx-into-polar-integral-and-evaluate-it-




Question Number 146067 by gsk2684 last updated on 10/Jul/21
transform the cartesian inyegral   ∫_0 ^1    ∫_0 ^(√(1−x^2 )) e^(−(x^2 +y^2 ))  dy dx into polar integral   and evaluate it.
transformthecartesianinyegral101x20e(x2+y2)dydxintopolarintegralandevaluateit.
Answered by Olaf_Thorendsen last updated on 10/Jul/21
A = ∫_0 ^1 ∫_0 ^(√(1−x^2 )) e^(−(x^2 +y^2 )) dydx  x = rcosθ, y = rsinθ  dS = dydx = rdrdθ  A = ∫_0 ^(π/2) ∫_0 ^1 e^(−r^2 ) rdrdθ  A = (π/2)[−e^(−r^2 ) ]_0 ^1  = (π/2)(1−(1/e))
A=0101x2e(x2+y2)dydxx=rcosθ,y=rsinθdS=dydx=rdrdθA=0π201er2rdrdθA=π2[er2]01=π2(11e)
Commented by gsk2684 last updated on 11/Jul/21
thank you sir  ∫_0 ^(Π/2) [((−e^(−r^2 ) )/2)]_0 ^1 dθ = ((−1)/2)∫_0 ^(Π/2) (e^(−1) −1)dθ  =((−1)/2)((1/e)−1)((Π/2))=(Π/4)(1−(1/e))
thankyousirΠ20[er22]01dθ=12Π20(e11)dθ=12(1e1)(Π2)=Π4(11e)

Leave a Reply

Your email address will not be published. Required fields are marked *