Menu Close

transform-the-ellipse-x-2-a-2-y-2-b-2-1-to-the-polar-equation-r-a-1-e-2-1-ecos-a-semimajor-axis-e-eccentricity-




Question Number 83590 by Tony Lin last updated on 04/Mar/20
transform the ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 to  the polar equation r= ((a(1−e^2 ))/(1+ecosθ))  a: semimajor axis  e: eccentricity
transformtheellipsex2a2+y2b2=1tothepolarequationr=a(1e2)1+ecosθa:semimajoraxise:eccentricity
Commented by mr W last updated on 04/Mar/20
(((x+((a+b)/2))^2 )/a^2 )+(y^2 /b^2 )=1 ⇔ r= ((a(1−e^2 ))/(1+ecosθ))
(x+a+b2)2a2+y2b2=1r=a(1e2)1+ecosθ
Commented by Tony Lin last updated on 04/Mar/20
(x^2 /a^2 )+(y^2 /b^2 )=1  b^2 x^2 +a^2 y^2 =a^2 b^2   (a^2 −c^2 )x^2 +a^2 y^2 =a^2 (a^2 −c^2 )  a^2 r^2 −c^2 x^2 =a^4 −c^2 a^2   e^2 =((c/a))^2 =((r^2 −a^2 )/(x^2 −a^2 ))  e^2 =((1−(a^2 /r^2 ))/(cos^2 θ−(a^2 /r^2 )))  r^2 e^2 cos^2 θ−e^2 a^2 =r^2 −a^2   r^2 (e^2 cos^2 θ−1)=a^2 (e^2 −1)  r=±a(√((1−e^2 )/((1−ecosθ)(1+ecosθ))))  Am I wrong?
x2a2+y2b2=1b2x2+a2y2=a2b2(a2c2)x2+a2y2=a2(a2c2)a2r2c2x2=a4c2a2e2=(ca)2=r2a2x2a2e2=1a2r2cos2θa2r2r2e2cos2θe2a2=r2a2r2(e2cos2θ1)=a2(e21)r=±a1e2(1ecosθ)(1+ecosθ)AmIwrong?
Commented by mr W last updated on 04/Mar/20
correct!
correct!

Leave a Reply

Your email address will not be published. Required fields are marked *