Question Number 83590 by Tony Lin last updated on 04/Mar/20
$${transform}\:{the}\:{ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:{to} \\ $$$${the}\:{polar}\:{equation}\:{r}=\:\frac{{a}\left(\mathrm{1}−{e}^{\mathrm{2}} \right)}{\mathrm{1}+{ecos}\theta} \\ $$$${a}:\:{semimajor}\:{axis} \\ $$$${e}:\:{eccentricity} \\ $$
Commented by mr W last updated on 04/Mar/20
$$\frac{\left({x}+\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\Leftrightarrow\:{r}=\:\frac{{a}\left(\mathrm{1}−{e}^{\mathrm{2}} \right)}{\mathrm{1}+{ecos}\theta} \\ $$
Commented by Tony Lin last updated on 04/Mar/20
$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${b}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} {y}^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\left({a}^{\mathrm{2}} −{c}^{\mathrm{2}} \right){x}^{\mathrm{2}} +{a}^{\mathrm{2}} {y}^{\mathrm{2}} ={a}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{c}^{\mathrm{2}} \right) \\ $$$${a}^{\mathrm{2}} {r}^{\mathrm{2}} −{c}^{\mathrm{2}} {x}^{\mathrm{2}} ={a}^{\mathrm{4}} −{c}^{\mathrm{2}} {a}^{\mathrm{2}} \\ $$$${e}^{\mathrm{2}} =\left(\frac{{c}}{{a}}\right)^{\mathrm{2}} =\frac{{r}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${e}^{\mathrm{2}} =\frac{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{r}^{\mathrm{2}} }}{{cos}^{\mathrm{2}} \theta−\frac{{a}^{\mathrm{2}} }{{r}^{\mathrm{2}} }} \\ $$$${r}^{\mathrm{2}} {e}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta−{e}^{\mathrm{2}} {a}^{\mathrm{2}} ={r}^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$${r}^{\mathrm{2}} \left({e}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta−\mathrm{1}\right)={a}^{\mathrm{2}} \left({e}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$${r}=\pm{a}\sqrt{\frac{\mathrm{1}−{e}^{\mathrm{2}} }{\left(\mathrm{1}−{ecos}\theta\right)\left(\mathrm{1}+{ecos}\theta\right)}} \\ $$$${Am}\:{I}\:{wrong}? \\ $$
Commented by mr W last updated on 04/Mar/20
$${correct}! \\ $$