Question Number 111279 by Aina Samuel Temidayo last updated on 03/Sep/20
$$\mathrm{Triangle}\:\mathrm{ABC}\:\mathrm{has}\:\mathrm{AB}=\mathrm{2}\centerdot\mathrm{AC}.\:\mathrm{Let} \\ $$$$\mathrm{D}\:\mathrm{and}\:\mathrm{E}\:\mathrm{be}\:\mathrm{on}\:\mathrm{AB}\:\mathrm{and}\:\mathrm{BC} \\ $$$$\mathrm{respectively}\:\mathrm{such}\:\mathrm{that}\:\angle\mathrm{BAE} \\ $$$$=\angle\mathrm{ACD}.\:\mathrm{Let}\:\mathrm{F}\:\mathrm{be}\:\mathrm{the}\:\mathrm{intersections}\:\mathrm{of} \\ $$$$\mathrm{segments}\:\mathrm{AE}\:\mathrm{and}\:\mathrm{CD},\:\mathrm{and}\:\mathrm{suppose} \\ $$$$\mathrm{that}\:\bigtriangleup\mathrm{CFE}\:\mathrm{is}\:\mathrm{equilateral}.\:\mathrm{What}\:\mathrm{is} \\ $$$$\angle\mathrm{ACB}? \\ $$
Answered by nimnim last updated on 03/Sep/20
$$\mathrm{90}° \\ $$
Commented by Aina Samuel Temidayo last updated on 03/Sep/20
$$\mathrm{Solution}\:\mathrm{please}? \\ $$