Menu Close

Trigonometry-selective-questions-




Question Number 120621 by TANMAY PANACEA last updated on 01/Nov/20
Trigonometry  selective questions
$${Trigonometry} \\ $$$${selective}\:{questions} \\ $$
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by Dwaipayan Shikari last updated on 01/Nov/20
S=(1+tan1°)(1+tan2°)...  (1+tan1°)=1+((1−tan44°)/(1+tan44°))=(2/(1+tan44°))  (1+tan2°)=(2/(1+tan43°))  S^2 =4.(2.2.2...44)  S^2 =2^(46)   S=2^(23)   n=23
$${S}=\left(\mathrm{1}+{tan}\mathrm{1}°\right)\left(\mathrm{1}+{tan}\mathrm{2}°\right)… \\ $$$$\left(\mathrm{1}+{tan}\mathrm{1}°\right)=\mathrm{1}+\frac{\mathrm{1}−{tan}\mathrm{44}°}{\mathrm{1}+{tan}\mathrm{44}°}=\frac{\mathrm{2}}{\mathrm{1}+{tan}\mathrm{44}°} \\ $$$$\left(\mathrm{1}+{tan}\mathrm{2}°\right)=\frac{\mathrm{2}}{\mathrm{1}+{tan}\mathrm{43}°} \\ $$$${S}^{\mathrm{2}} =\mathrm{4}.\left(\mathrm{2}.\mathrm{2}.\mathrm{2}…\mathrm{44}\right) \\ $$$${S}^{\mathrm{2}} =\mathrm{2}^{\mathrm{46}} \\ $$$${S}=\mathrm{2}^{\mathrm{23}} \\ $$$${n}=\mathrm{23} \\ $$
Commented by TANMAY PANACEA last updated on 01/Nov/20
(1+tan1)  (tan45+tan1)=(((sin45cos1+cos45sin1)/(cos45cos1)))  (((sin46)/(cos45cos1)))  so  p=((sin46)/(cos45cos1))×((sin47)/(cos45cos2))×((sin48)/(cos45cos3))×..×((sin89)/(cos45cos44))×((sin90)/(cos45cos45))  =now look  sin46=cos44..  sin47=cos43  so cancel out  p=((1/(cos45)))^(44) ×((1/(cos45)))^2 =((√2) )^(46) =2^(23)
$$\left(\mathrm{1}+{tan}\mathrm{1}\right) \\ $$$$\left({tan}\mathrm{45}+{tan}\mathrm{1}\right)=\left(\frac{{sin}\mathrm{45}{cos}\mathrm{1}+{cos}\mathrm{45}{sin}\mathrm{1}}{{cos}\mathrm{45}{cos}\mathrm{1}}\right) \\ $$$$\left(\frac{{sin}\mathrm{46}}{{cos}\mathrm{45}{cos}\mathrm{1}}\right) \\ $$$${so} \\ $$$${p}=\frac{{sin}\mathrm{46}}{{cos}\mathrm{45}{cos}\mathrm{1}}×\frac{{sin}\mathrm{47}}{{cos}\mathrm{45}{cos}\mathrm{2}}×\frac{{sin}\mathrm{48}}{{cos}\mathrm{45}{cos}\mathrm{3}}×..×\frac{{sin}\mathrm{89}}{{cos}\mathrm{45}{cos}\mathrm{44}}×\frac{{sin}\mathrm{90}}{{cos}\mathrm{45}{cos}\mathrm{45}} \\ $$$$={now}\:{look} \\ $$$${sin}\mathrm{46}={cos}\mathrm{44}.. \\ $$$${sin}\mathrm{47}={cos}\mathrm{43}\:\:{so}\:{cancel}\:{out} \\ $$$${p}=\left(\frac{\mathrm{1}}{{cos}\mathrm{45}}\right)^{\mathrm{44}} ×\left(\frac{\mathrm{1}}{{cos}\mathrm{45}}\right)^{\mathrm{2}} =\left(\sqrt{\mathrm{2}}\:\right)^{\mathrm{46}} =\mathrm{2}^{\mathrm{23}} \\ $$
Commented by TANMAY PANACEA last updated on 01/Nov/20
thank you Dawiayan
$${thank}\:{you}\:{Dawiayan} \\ $$
Commented by bobhans last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 02/Nov/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *