Menu Close

Try-to-write-new-year-number-2018-as-i-Sum-of-two-primes-ii-Sum-of-three-primes-iii-Sum-of-primes-iv-Sum-of-as-many-distinct-primes-as-possible-




Question Number 27057 by Rasheed.Sindhi last updated on 01/Jan/18
Try to write new year number  (2018)as:  (i) Sum of two primes  (ii)Sum of three primes  (iii)Sum of primes  (iv)Sum of as many distinct primes as           possible.
$$\mathrm{Try}\:\mathrm{to}\:\mathrm{write}\:\mathrm{new}\:\mathrm{year}\:\mathrm{number} \\ $$$$\left(\mathrm{2018}\right)\mathrm{as}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{primes} \\ $$$$\left(\mathrm{ii}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{three}\:\mathrm{primes} \\ $$$$\left(\mathrm{iii}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{primes} \\ $$$$\left(\mathrm{iv}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{as}\:\mathrm{many}\:\mathrm{distinct}\:\mathrm{primes}\:\mathrm{as} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{possible}. \\ $$
Commented by prakash jain last updated on 01/Jan/18
(iv) is easy for every even number  2018=2×1009.  Amore interesting question can be  max number of prime parts with  distinct primes.
$$\left(\mathrm{iv}\right)\:\mathrm{is}\:\mathrm{easy}\:\mathrm{for}\:\mathrm{every}\:\mathrm{even}\:\mathrm{number} \\ $$$$\mathrm{2018}=\mathrm{2}×\mathrm{1009}. \\ $$$$\mathrm{Amore}\:\mathrm{interesting}\:\mathrm{question}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{max}\:\mathrm{number}\:\mathrm{of}\:\mathrm{prime}\:\mathrm{parts}\:\mathrm{with} \\ $$$$\mathrm{distinct}\:\mathrm{primes}. \\ $$
Commented by math solver last updated on 01/Jan/18
use sieve of sundaram  and goldbach′s conjecture ! :)  enjoy!
$${use}\:{sieve}\:{of}\:{sundaram} \\ $$$$\left.{and}\:{goldbach}'{s}\:{conjecture}\:!\::\right) \\ $$$${enjoy}! \\ $$
Commented by Rasheed.Sindhi last updated on 01/Jan/18
Yes sir I actually mean distinct  primes but I didn′t write the  condition mistakenly.
$$\mathrm{Yes}\:\mathrm{sir}\:\mathrm{I}\:\mathrm{actually}\:\mathrm{mean}\:\mathrm{distinct} \\ $$$$\mathrm{primes}\:\mathrm{but}\:\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{write}\:\mathrm{the} \\ $$$$\mathrm{condition}\:\mathrm{mistakenly}. \\ $$
Answered by Rasheed.Sindhi last updated on 02/Jan/18
(i) 7+2011=2018        19+1999=2018         31+1987=2018      2+5+2011=2018      2+17+1999=2018
$$\left(\mathrm{i}\right)\:\mathrm{7}+\mathrm{2011}=\mathrm{2018} \\ $$$$\:\:\:\:\:\:\mathrm{19}+\mathrm{1999}=\mathrm{2018} \\ $$$$\:\:\:\:\:\:\:\mathrm{31}+\mathrm{1987}=\mathrm{2018} \\ $$$$\:\:\:\:\mathrm{2}+\mathrm{5}+\mathrm{2011}=\mathrm{2018} \\ $$$$\:\:\:\:\mathrm{2}+\mathrm{17}+\mathrm{1999}=\mathrm{2018} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *