Question Number 26959 by Tinkutara last updated on 31/Dec/17
$$\mathrm{Two}\:\mathrm{balls},\:\mathrm{each}\:\mathrm{of}\:\mathrm{radius}\:{R},\:\mathrm{equal}\:\mathrm{mass} \\ $$$$\mathrm{and}\:\mathrm{density}\:\mathrm{are}\:\mathrm{placed}\:\mathrm{in}\:\mathrm{contact},\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{force}\:\mathrm{of}\:\mathrm{gravitation}\:\mathrm{between}\:\mathrm{them} \\ $$$$\mathrm{is}\:\mathrm{proportional}\:\mathrm{to} \\ $$$$\left(\mathrm{1}\right)\:{F}\:\propto\:\frac{\mathrm{1}}{{R}^{\mathrm{2}} } \\ $$$$\left(\mathrm{2}\right)\:{F}\:\propto\:{R} \\ $$$$\left(\mathrm{3}\right)\:{F}\:\propto\:{R}^{\mathrm{4}} \\ $$$$\left(\mathrm{4}\right)\:{F}\:\propto\:\frac{\mathrm{1}}{{R}} \\ $$
Answered by prakash jain last updated on 31/Dec/17
$$\mathrm{mass}\:\mathrm{of}\:\mathrm{each}\:\mathrm{ball}=\frac{\mathrm{4}}{\mathrm{3}}\rho\pi\mathrm{R}^{\mathrm{3}} \\ $$$$\mathrm{F}=\frac{{Gm}_{\mathrm{1}} {m}_{\mathrm{2}} }{{R}^{\mathrm{2}} }\propto{R}^{\mathrm{4}} \\ $$$$ \\ $$
Commented by Tinkutara last updated on 31/Dec/17
Yes this answer is correct according to one book but I have another book which says:
Commented by Tinkutara last updated on 31/Dec/17
Commented by prakash jain last updated on 31/Dec/17
$$\mathrm{Maybe}\:{ajfour}/\mathrm{mrW1}\:\mathrm{can}\:\mathrm{comment}. \\ $$$$\mathrm{In}\:\mathrm{my}\:\mathrm{view}\:\mathrm{if}\:\mathrm{R}\:\mathrm{is}\:\mathrm{increased} \\ $$$$\mathrm{mass}\:\mathrm{will}\:\mathrm{increase}\:\mathrm{and}\:\mathrm{distance} \\ $$$$\mathrm{will}\:\mathrm{also}\:\mathrm{increase}\:\mathrm{so}\:\mathrm{force}\:\mathrm{will} \\ $$$$\mathrm{be}\:\mathrm{proportinal}\:\mathrm{to}\:\mathrm{R}^{\mathrm{4}} . \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{question}\:\mathrm{density}\:\mathrm{is}\:\mathrm{contant} \\ $$$$\mathrm{and}\:\mathrm{not}\:\mathrm{mass}. \\ $$
Commented by Tinkutara last updated on 31/Dec/17
But to me both answers seem correct. But what to do if this question really comes in exam?
Commented by Femmy last updated on 31/Dec/17
$$\mathrm{it}\:\mathrm{is}\:\mathrm{an}\:\mathrm{inverse}\:\mathrm{square}\:\mathrm{law}\:\mathrm{remember}? \\ $$
Commented by Tinkutara last updated on 31/Dec/17
But the book from which I posted this question says (3). What is the mistake if we go by other method?
Commented by prakash jain last updated on 31/Dec/17
$$\mathrm{R}^{\mathrm{4}} \:\mathrm{is}\:\mathrm{correct}\:\mathrm{for}\:\mathrm{this}\:\mathrm{question}\:\mathrm{since} \\ $$$$\mathrm{mass}\:\mathrm{also}\:\mathrm{depends}\:\mathrm{on}\:{R}. \\ $$$${F}\propto\frac{{m}_{\mathrm{1}} {m}_{\mathrm{2}} }{{r}^{\mathrm{2}} } \\ $$$$\mathrm{Given}\:\rho\:\mathrm{is}\:\mathrm{constant}\:{F}\alpha{R}^{\mathrm{4}} \\ $$
Commented by Tinkutara last updated on 31/Dec/17
So when the book from which I posted image is correct?
Commented by mrW1 last updated on 31/Dec/17
$${I}\:{think}\:{the}\:{answer}\:{should}\:{be}\:\left(\mathrm{1}\right). \\ $$$${The}\:{question}\:{asks}\:{the}\:{force}\:{between} \\ $$$${the}\:{two}\:{balls}.\:{They}\:{are}\:{fix}\:{units},\: \\ $$$${concerning}\:{mass}\:{and}\:{size}. \\ $$
Commented by prakash jain last updated on 31/Dec/17
$$\mathrm{Hi}\:\mathrm{mrW1}, \\ $$$$\mathrm{The}\:\mathrm{force}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{is}\:\mathrm{proportion} \\ $$$$\mathrm{to}\:\mathrm{R}^{\mathrm{4}} \:\mathrm{since}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{dependent}\:\mathrm{on}\:\mathrm{R}. \\ $$$$\mathrm{Say}\:\mathrm{another}\:\mathrm{sumi}\:\mathrm{lar}\:\mathrm{question}\:\mathrm{is}\:\mathrm{when} \\ $$$$\mathrm{a}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{melted}\:\mathrm{to}\:\mathrm{form}\:\mathrm{a}\:\mathrm{wire}\:\mathrm{then} \\ $$$$\mathrm{resistance}\:\mathrm{is}\:\mathrm{proportinal}\:\mathrm{to}\:{l}^{?} . \\ $$$$\mathrm{Force}\:\mathrm{between}\:\mathrm{two}\:\mathrm{bodies}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{given}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{propotional}\:\mathrm{to}\:\frac{\mathrm{1}}{{R}^{\mathrm{2}} }. \\ $$$$\mathrm{But}\:\mathrm{when}\:\mathrm{the}\:\mathrm{question}\:\mathrm{says}\:\mathrm{constanst} \\ $$$$\mathrm{density}\:\left(\mathrm{and}\:\mathrm{not}\:\mathrm{given}\:\mathrm{mass}\right)\:\mathrm{force} \\ $$$$\mathrm{will}\:\mathrm{be}\:\mathrm{propotional}\:\mathrm{to}\:{R}^{\mathrm{4}} . \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{wrong}\:\mathrm{with}\:\mathrm{my}\:\mathrm{argument}? \\ $$
Commented by mrW1 last updated on 31/Dec/17
$${you}\:{are}\:{also}\:{right}\:{sir}.\:{the}\:{question}\:{is} \\ $$$${just}\:{not}\:{clear}\:{enough}.\:{it}\:{can}\:{be} \\ $$$${understood}\:{differently},\:{depending} \\ $$$${on}\:{if}\:{the}\:{mass}\:{of}\:{the}\:{balls}\:{is}\:{seen} \\ $$$${as}\:{constant}\:{or}\:{not}. \\ $$
Answered by Femmy last updated on 31/Dec/17
$$=> \\ $$$$\mathrm{1} \\ $$
Commented by Tinkutara last updated on 31/Dec/17
I want to know which option is really correct.
Answered by ajfour last updated on 31/Dec/17
$${mass}\:{remains}\:{constant}\:{or} \\ $$$${density}\:{stays}\:{constant}\:{must}\:{be} \\ $$$${mentioned}. \\ $$$${Both}\:{expeiments}\:{are}\:{possible}. \\ $$$${we}\:{can}\:{choose}\:{to}\:{change}\:{balls} \\ $$$${for}\:{new}\:{radii}\:{keeping}\:{mass}\:{the} \\ $$$${same}\:{or}\:{density}\:{the}\:{same}. \\ $$
Commented by prakash jain last updated on 31/Dec/17
$$\mathrm{Question}\:\mathrm{says}\:\mathrm{copper}\:\mathrm{balls}\:\mathrm{so} \\ $$$$\mathrm{density}\:\mathrm{is}\:\mathrm{constant}. \\ $$