Menu Close

Two-blocks-are-placed-on-a-smooth-horizontal-surface-and-connected-by-a-string-pulley-arrangement-as-shown-If-a-force-F-starts-acting-on-block-m-1-then-find-the-relation-between-acceleration-of-bot




Question Number 19355 by Tinkutara last updated on 10/Aug/17
Two blocks are placed on a smooth  horizontal surface and connected by a  string pulley arrangement as shown.  If a force F starts acting on block m_1 ,  then find the relation between acceleration  of both masses and their values
$$\mathrm{Two}\:\mathrm{blocks}\:\mathrm{are}\:\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{smooth} \\ $$$$\mathrm{horizontal}\:\mathrm{surface}\:\mathrm{and}\:\mathrm{connected}\:\mathrm{by}\:\mathrm{a} \\ $$$$\mathrm{string}\:\mathrm{pulley}\:\mathrm{arrangement}\:\mathrm{as}\:\mathrm{shown}. \\ $$$$\mathrm{If}\:\mathrm{a}\:\mathrm{force}\:{F}\:\mathrm{starts}\:\mathrm{acting}\:\mathrm{on}\:\mathrm{block}\:{m}_{\mathrm{1}} , \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{relation}\:\mathrm{between}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{both}\:\mathrm{masses}\:\mathrm{and}\:\mathrm{their}\:\mathrm{values} \\ $$
Commented by Tinkutara last updated on 10/Aug/17
Commented by ajfour last updated on 10/Aug/17
F−3T=m_1 a_1     ...(i)  4T=m_2 a_2            ...(ii)  4a_2 =3a_1              ...(iii)  ⇒F−((3m_2 a_2 )/4)=((4m_1 a_2 )/3)  ⇒  a_2 =((12F)/(16m_1 +9m_2 ))  and   a_1 =((16F)/(16m_1 +9m_2 )) .
$$\mathrm{F}−\mathrm{3T}=\mathrm{m}_{\mathrm{1}} \mathrm{a}_{\mathrm{1}} \:\:\:\:…\left(\mathrm{i}\right) \\ $$$$\mathrm{4T}=\mathrm{m}_{\mathrm{2}} \mathrm{a}_{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:…\left(\mathrm{ii}\right) \\ $$$$\mathrm{4a}_{\mathrm{2}} =\mathrm{3a}_{\mathrm{1}} \:\:\:\:\:\:\:\:\:\:\:\:\:…\left(\mathrm{iii}\right) \\ $$$$\Rightarrow\mathrm{F}−\frac{\mathrm{3m}_{\mathrm{2}} \mathrm{a}_{\mathrm{2}} }{\mathrm{4}}=\frac{\mathrm{4m}_{\mathrm{1}} \mathrm{a}_{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow\:\:\mathrm{a}_{\mathrm{2}} =\frac{\mathrm{12F}}{\mathrm{16m}_{\mathrm{1}} +\mathrm{9m}_{\mathrm{2}} } \\ $$$$\mathrm{and}\:\:\:\mathrm{a}_{\mathrm{1}} =\frac{\mathrm{16F}}{\mathrm{16m}_{\mathrm{1}} +\mathrm{9m}_{\mathrm{2}} }\:. \\ $$
Commented by Tinkutara last updated on 10/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *