Menu Close

Two-concurrent-forces-F-1-12N-and-F-2-30N-are-150-apart-Calculate-the-angle-between-F-2-and-the-resultant-force-




Question Number 147149 by nadovic last updated on 18/Jul/21
 Two concurrent forces F_1  = 12N and   F_2  = 30N are 150° apart. Calculate    the angle between F_2  and the resultant   force.
TwoconcurrentforcesF1=12NandF2=30Nare150°apart.CalculatetheanglebetweenF2andtheresultantforce.
Answered by Olaf_Thorendsen last updated on 18/Jul/21
F_1 ^→  =  ((F_1 ),(0) )  F_2 ^→  =  (((F_2 cos150°)),((F_2 sin150°)) )  F^→  = F_1 ^→  + F_2 ^→   =  (((F_1 +F_2 cos150°)),((F_2 sin150°)) )  ∣∣F^→ ∣∣^2  = (F_1 +F_2 cos150°)^2 +F_2 ^2 sin^2 150°  ∣∣F^→ ∣∣^2  = (12+30cos150°)^2 +30^2 sin^2 150°  ∣∣F^→ ∣∣^2  ≈ 420,46  ∣∣F^→ ∣∣ ≈ 20,51 N    F_2 ^→ •F^(→)  = F_2 Fcos(F_2 ,F) ≈ 615,15cos(F_2 ,F)  F_2 ^→ •F^(→)  = F_2 cos150°(F_1 +F_2 cos150°)  +F_2 ^2 sin^2 150° ≈ 588,23  cos(F_2 ,F) = ((588,23)/(615,15)) = 0,956  ⇒ arg(F_2 ,F) = 17,01°
F1=(F10)F2=(F2cos150°F2sin150°)F=F1+F2=(F1+F2cos150°F2sin150°)∣∣F2=(F1+F2cos150°)2+F22sin2150°∣∣F2=(12+30cos150°)2+302sin2150°∣∣F2420,46∣∣F∣∣20,51NF2F=F2Fcos(F2,F)615,15cos(F2,F)F2F=F2cos150°(F1+F2cos150°)+F22sin2150°588,23cos(F2,F)=588,23615,15=0,956arg(F2,F)=17,01°
Commented by nadovic last updated on 18/Jul/21
Thank you Sir
ThankyouSirThankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *