Menu Close

Two-fair-dice-are-rolled-once-Let-X-be-the-random-variable-representing-the-sum-of-the-numbers-that-show-up-on-the-two-dice-Find-X-




Question Number 176168 by nadovic last updated on 14/Sep/22
Two fair dice are rolled once. Let X  be the random variable representing  the sum of the numbers that show  up on the two dice. Find X.
Twofairdicearerolledonce.LetXbetherandomvariablerepresentingthesumofthenumbersthatshowuponthetwodice.FindX.
Answered by aleks041103 last updated on 14/Sep/22
let x_1  and x_2  be the numbers on the two dice.  then X=x_1 +x_2   then the probability of given value X is:  P(X)=Σ_(x_1 =1) ^6 p(x_1 ,X−x_1 )=  =Σ_(x=1) ^6 p(x)p(X−x)=(1/(36))Σ_(x=1) ^6  { ((1, 1≤X−x≤6)),((0, else)) :}   1≤X−x≤6⇒1−X≤−x≤6−X  ⇒X−6≤x≤X−1  ⇒P(X)=(1/(36))∣([X−6,X−1]∩[1,6]∩N)∣  obv. P(X<2)=0 and P(X>12)=0    for X∈[2,6]: X−6∉N while X−1∈N and 6>X−1>0  ⇒P(X∈[2,6])=(1/(36))∣[1,X−1]∩[1,6]∩N∣=  =(1/(36))∣{1,2,...,X−1}∣=((X−1)/(36))    for X=7:P(7)=(1/(36))∣{1,2,...,6}∣=(1/6)    for X∈[8,12]: [X−6,X−1]∩[1,6]=[X−6,6]  ⇒P(X∈[8,12])=(1/(36))∣{X−6,X−5,...,6}∣=  =(1/(36))(13−X)  ⇒P(X)= { ((0, X∉[2,12]∩N)),((((X−1)/(36)), X∈[2,7]∩N)),((((13−X)/(36)), X∈[8,12]∩N)) :}
letx1andx2bethenumbersonthetwodice.thenX=x1+x2thentheprobabilityofgivenvalueXis:P(X)=6x1=1p(x1,Xx1)==6x=1p(x)p(Xx)=1366x=1{1,1Xx60,else1Xx61Xx6XX6xX1P(X)=136([X6,X1][1,6]N)obv.P(X<2)=0andP(X>12)=0forX[2,6]:X6NwhileX1Nand6>X1>0P(X[2,6])=136[1,X1][1,6]N∣==136{1,2,,X1}∣=X136forX=7:P(7)=136{1,2,,6}∣=16forX[8,12]:[X6,X1][1,6]=[X6,6]P(X[8,12])=136{X6,X5,,6}∣==136(13X)P(X)={0,X[2,12]NX136,X[2,7]N13X36,X[8,12]N
Commented by Tawa11 last updated on 15/Sep/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *