Menu Close

Two-forces-F1-and-F2-of-magnitude-3-and-4-Newtons-are-inclined-at-angles-150-and-60-to-the-positive-x-axis-respectively-Find-the-resultant-force-




Question Number 178877 by Tawa11 last updated on 22/Oct/22
Two forces F1 and F2 of magnitude 3 and 4 Newtons are inclined at angles 150° and 60° to the positive x-axis respectively . Find the resultant force?
Two forces F1 and F2 of magnitude 3 and 4 Newtons are inclined at angles 150° and 60° to the positive x-axis respectively . Find the resultant force?
Answered by ARUNG_Brandon_MBU last updated on 22/Oct/22
ΣF_x : F_2 cos60°−F_1 cos30°=2−((3(√3))/2)  ΣF_y : F_2 sin60°+F_1 sin30°=2(√3)+(3/2)  F=(√(F_x ^2 +F_y ^2 ))     =(√(4−6(√3)+((27)/4)+12+6(√3)+(9/4)))     =(√(16+9))=5 units  tanθ=(F_y /F_x )=((4(√3)+3)/(4−3(√3)))=(((4(√3)+3)(4+3(√3)))/(16−27))            =((12+25(√3)+108)/(−11))=−((120+25(√3))/(11))  θ=180°−arctan(((120+25(√3))/(11)))  Resultant force is of magnitude 5 units inclined  at angle θ from positive x-axis.
$$\Sigma{F}_{{x}} :\:{F}_{\mathrm{2}} \mathrm{cos60}°−{F}_{\mathrm{1}} \mathrm{cos30}°=\mathrm{2}−\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Sigma{F}_{\mathrm{y}} :\:{F}_{\mathrm{2}} \mathrm{sin60}°+{F}_{\mathrm{1}} \mathrm{sin30}°=\mathrm{2}\sqrt{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${F}=\sqrt{{F}_{{x}} ^{\mathrm{2}} +{F}_{\mathrm{y}} ^{\mathrm{2}} } \\ $$$$\:\:\:=\sqrt{\mathrm{4}−\mathrm{6}\sqrt{\mathrm{3}}+\frac{\mathrm{27}}{\mathrm{4}}+\mathrm{12}+\mathrm{6}\sqrt{\mathrm{3}}+\frac{\mathrm{9}}{\mathrm{4}}} \\ $$$$\:\:\:=\sqrt{\mathrm{16}+\mathrm{9}}=\mathrm{5}\:\mathrm{units} \\ $$$$\mathrm{tan}\theta=\frac{{F}_{\mathrm{y}} }{{F}_{{x}} }=\frac{\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{3}}{\mathrm{4}−\mathrm{3}\sqrt{\mathrm{3}}}=\frac{\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{3}\right)\left(\mathrm{4}+\mathrm{3}\sqrt{\mathrm{3}}\right)}{\mathrm{16}−\mathrm{27}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{12}+\mathrm{25}\sqrt{\mathrm{3}}+\mathrm{108}}{−\mathrm{11}}=−\frac{\mathrm{120}+\mathrm{25}\sqrt{\mathrm{3}}}{\mathrm{11}} \\ $$$$\theta=\mathrm{180}°−\mathrm{arctan}\left(\frac{\mathrm{120}+\mathrm{25}\sqrt{\mathrm{3}}}{\mathrm{11}}\right) \\ $$$$\mathrm{Resultant}\:\mathrm{force}\:\mathrm{is}\:\mathrm{of}\:\mathrm{magnitude}\:\mathrm{5}\:\mathrm{units}\:\mathrm{inclined} \\ $$$$\mathrm{at}\:\mathrm{angle}\:\theta\:\mathrm{from}\:\mathrm{positive}\:{x}-\mathrm{axis}. \\ $$
Commented by Tawa11 last updated on 22/Oct/22
God bless you sir. I appreciate.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *