Menu Close

two-medians-of-a-triange-are-3-and-4-cm-respectively-find-the-maximum-area-of-the-triangle-




Question Number 181485 by mr W last updated on 25/Nov/22
two medians of a triange are 3 and  4 cm respectively. find the maximum  area of the triangle.
$${two}\:{medians}\:{of}\:{a}\:{triange}\:{are}\:\mathrm{3}\:{and} \\ $$$$\mathrm{4}\:{cm}\:{respectively}.\:{find}\:{the}\:{maximum} \\ $$$${area}\:{of}\:{the}\:{triangle}. \\ $$
Answered by Acem last updated on 26/Nov/22
Commented by mr W last updated on 26/Nov/22
great!
$${great}! \\ $$
Commented by Acem last updated on 26/Nov/22
Commented by Acem last updated on 26/Nov/22
Thank you Sir!    Because my English, please write an explanation   of the idea of that ratio (4/3) , with my thanks
$${Thank}\:{you}\:{Sir}! \\ $$$$ \\ $$$${Because}\:{my}\:{English},\:{please}\:{write}\:{an}\:{explanation} \\ $$$$\:{of}\:{the}\:{idea}\:{of}\:{that}\:{ratio}\:\frac{\mathrm{4}}{\mathrm{3}}\:,\:{with}\:{my}\:{thanks} \\ $$
Commented by mr W last updated on 26/Nov/22
Answered by mr W last updated on 26/Nov/22
Commented by mr W last updated on 26/Nov/22
say the red medians are given.  we know [ΔAFE]=(([ΔABC])/4)  ⇒[EFBC]=((3[ΔABC])/4)  ⇒[ΔABC]=(4/3)[EFBC]       =(4/3)×((m_b m_c sin θ)/2)=((2 m_b m_c sin θ)/3)  we see the area of triangle ABC  is maximum when θ=90°.  [ΔABC]_(max) =((2 m_b m_c )/3)=((2×3×4)/3)=8 cm^2   in this case ΔABC is right angled.
$${say}\:{the}\:{red}\:{medians}\:{are}\:{given}. \\ $$$${we}\:{know}\:\left[\Delta{AFE}\right]=\frac{\left[\Delta{ABC}\right]}{\mathrm{4}} \\ $$$$\Rightarrow\left[{EFBC}\right]=\frac{\mathrm{3}\left[\Delta{ABC}\right]}{\mathrm{4}} \\ $$$$\Rightarrow\left[\Delta{ABC}\right]=\frac{\mathrm{4}}{\mathrm{3}}\left[{EFBC}\right] \\ $$$$\:\:\:\:\:=\frac{\mathrm{4}}{\mathrm{3}}×\frac{{m}_{{b}} {m}_{{c}} \mathrm{sin}\:\theta}{\mathrm{2}}=\frac{\mathrm{2}\:{m}_{{b}} {m}_{{c}} \mathrm{sin}\:\theta}{\mathrm{3}} \\ $$$${we}\:{see}\:{the}\:{area}\:{of}\:{triangle}\:{ABC} \\ $$$${is}\:{maximum}\:{when}\:\theta=\mathrm{90}°. \\ $$$$\left[\Delta{ABC}\right]_{{max}} =\frac{\mathrm{2}\:{m}_{{b}} {m}_{{c}} }{\mathrm{3}}=\frac{\mathrm{2}×\mathrm{3}×\mathrm{4}}{\mathrm{3}}=\mathrm{8}\:{cm}^{\mathrm{2}} \\ $$$${in}\:{this}\:{case}\:\Delta{ABC}\:{is}\:{right}\:{angled}. \\ $$
Commented by SEKRET last updated on 26/Nov/22
  beatiful  answer
$$\:\:\boldsymbol{\mathrm{beatiful}}\:\:\boldsymbol{\mathrm{answer}} \\ $$
Commented by Acem last updated on 26/Nov/22
I liked your method more than mine, thank you
$${I}\:{liked}\:{your}\:{method}\:{more}\:{than}\:{mine},\:{thank}\:{you} \\ $$
Commented by Acem last updated on 26/Nov/22
   mine gives the value of the 3rd midian and it   show how to convert the midians into sides of   the new triangle “right one = max”   that′s good, but i felt that it′s a little unconvincing.
$$ \\ $$$$\:{mine}\:{gives}\:{the}\:{value}\:{of}\:{the}\:\mathrm{3}{rd}\:{midian}\:{and}\:{it} \\ $$$$\:{show}\:{how}\:{to}\:{convert}\:{the}\:{midians}\:{into}\:{sides}\:{of} \\ $$$$\:{the}\:{new}\:{triangle}\:“{right}\:{one}\:=\:{max}'' \\ $$$$\:{that}'{s}\:{good},\:{but}\:{i}\:{felt}\:{that}\:{it}'{s}\:{a}\:{little}\:{unconvincing}. \\ $$
Commented by mr W last updated on 26/Nov/22
Commented by mr W last updated on 26/Nov/22
many roads lead to Rome!
$${many}\:{roads}\:{lead}\:{to}\:{Rome}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *