Menu Close

Two-plane-mirrors-are-inclined-at-an-angle-of-30-A-ray-of-light-which-makes-an-angle-of-incidence-of-50-with-one-of-the-mirrors-undergoes-two-successive-reflections-at-the-mirrors-Calculate-the-angl




Question Number 37945 by NECx last updated on 19/Jun/18
Two plane mirrors are inclined at  an angle of 30°.A ray of light which  makes an angle of incidence of 50°  with one of the mirrors,undergoes  two successive reflections at the  mirrors.Calculate the angle of  deviation.      please help....its urgent
$${Two}\:{plane}\:{mirrors}\:{are}\:{inclined}\:{at} \\ $$$${an}\:{angle}\:{of}\:\mathrm{30}°.{A}\:{ray}\:{of}\:{light}\:{which} \\ $$$${makes}\:{an}\:{angle}\:{of}\:{incidence}\:{of}\:\mathrm{50}° \\ $$$${with}\:{one}\:{of}\:{the}\:{mirrors},{undergoes} \\ $$$${two}\:{successive}\:{reflections}\:{at}\:{the} \\ $$$${mirrors}.{Calculate}\:{the}\:{angle}\:{of} \\ $$$${deviation}. \\ $$$$ \\ $$$$ \\ $$$${please}\:{help}….{its}\:{urgent} \\ $$
Commented by MrW3 last updated on 20/Jun/18
Commented by MrW3 last updated on 20/Jun/18
angle of deviation=60°
$${angle}\:{of}\:{deviation}=\mathrm{60}° \\ $$
Commented by MrW3 last updated on 20/Jun/18
Commented by MrW3 last updated on 20/Jun/18
deviation angle is also 60°.
$${deviation}\:{angle}\:{is}\:{also}\:\mathrm{60}°. \\ $$
Commented by NECx last updated on 20/Jun/18
please give a diagrammatic  representation.Thanks in advance.
$${please}\:{give}\:{a}\:{diagrammatic} \\ $$$${representation}.{Thanks}\:{in}\:{advance}. \\ $$
Commented by NECx last updated on 20/Jun/18
i dont understand the calculation  here
$${i}\:{dont}\:{understand}\:{the}\:{calculation} \\ $$$${here} \\ $$
Commented by MrW3 last updated on 21/Jun/18
Commented by MrW3 last updated on 21/Jun/18
deviation angle means the change of  direction.  to calculate it, you can take an any  reference line and determine the  angle between the light ray and the  reference line before the reflections  and after the reflections, the difference  of both angles is then the requested  deviation angle.
$${deviation}\:{angle}\:{means}\:{the}\:{change}\:{of} \\ $$$${direction}. \\ $$$${to}\:{calculate}\:{it},\:{you}\:{can}\:{take}\:{an}\:{any} \\ $$$${reference}\:{line}\:{and}\:{determine}\:{the} \\ $$$${angle}\:{between}\:{the}\:{light}\:{ray}\:{and}\:{the} \\ $$$${reference}\:{line}\:{before}\:{the}\:{reflections} \\ $$$${and}\:{after}\:{the}\:{reflections},\:{the}\:{difference} \\ $$$${of}\:{both}\:{angles}\:{is}\:{then}\:{the}\:{requested} \\ $$$${deviation}\:{angle}. \\ $$
Commented by NECx last updated on 22/Jun/18
Thank you so much.I really  understand the concept now.
$${Thank}\:{you}\:{so}\:{much}.{I}\:{really} \\ $$$${understand}\:{the}\:{concept}\:{now}. \\ $$
Commented by MrW3 last updated on 23/Jun/18
nice to know that I could give you a  real help.
$${nice}\:{to}\:{know}\:{that}\:{I}\:{could}\:{give}\:{you}\:{a} \\ $$$${real}\:{help}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *