Menu Close

Two-similar-ball-of-mass-m-attached-by-silk-thread-of-length-a-and-carry-similar-charge-q-assume-is-small-enough-that-tan-sin-to-this-approximation-show-that-X-qa-2pi-0-mg-1-3-w




Question Number 50994 by peter frank last updated on 23/Dec/18
Two similar ball of mass  m attached by  silk thread  of length a  and carry  similar charge  q.assume θ is  small enough that  tanθ≈sinθ to this  approximation,show   that    X=(((qa)/(2πε_0 mg)))^(1/3)    where  X is distance of  separation.
$${Two}\:{similar}\:{ball}\:{of}\:{mass} \\ $$$${m}\:{attached}\:{by}\:\:{silk}\:{thread} \\ $$$${of}\:{length}\:{a}\:\:{and}\:{carry} \\ $$$${similar}\:{charge}\:\:{q}.{assume}\:\theta\:{is} \\ $$$${small}\:{enough}\:{that} \\ $$$${tan}\theta\approx{sin}\theta\:{to}\:{this} \\ $$$${approximation},{show}\: \\ $$$${that}\:\:\:\:{X}=\left(\frac{{qa}}{\mathrm{2}\pi\varepsilon_{\mathrm{0}} {mg}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \: \\ $$$${where}\:\:{X}\:{is}\:{distance}\:{of} \\ $$$${separation}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Dec/18
T=tension in thread   Tcosθ=mg  Tsinθ=F   F=repulsive force =(1/(4πε_0 ))(q^2 /x^2 )  tanθ=(F/(mg))  sinθ=(F/(mg))  (x/(2a))=(1/(4πε_0 ))×(q^2 /x^2 )×(1/(mg))  x^3 =((aq^2 )/(2πε_0 ))×(1/(mg))  x=(((aq^2 )/(2πε_0 mg)))^(1/3)
$${T}={tension}\:{in}\:{thread}\: \\ $$$${Tcos}\theta={mg} \\ $$$${Tsin}\theta={F}\: \\ $$$${F}={repulsive}\:{force}\:=\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$${tan}\theta=\frac{{F}}{{mg}} \\ $$$${sin}\theta=\frac{{F}}{{mg}} \\ $$$$\frac{{x}}{\mathrm{2}{a}}=\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }×\frac{{q}^{\mathrm{2}} }{{x}^{\mathrm{2}} }×\frac{\mathrm{1}}{{mg}} \\ $$$${x}^{\mathrm{3}} =\frac{{aq}^{\mathrm{2}} }{\mathrm{2}\pi\epsilon_{\mathrm{0}} }×\frac{\mathrm{1}}{{mg}} \\ $$$${x}=\left(\frac{{aq}^{\mathrm{2}} }{\mathrm{2}\pi\epsilon_{\mathrm{0}} {mg}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$
Answered by peter frank last updated on 23/Dec/18
F=(q^2 /(4πε_0 r^2 ))   [q_1 =q_(2  ) ]  sin θ=(x/(2a))  tan θ=(F/(mg))  F=mgtan θ  tan θ≈sin θ=θ  F=mg(x/(2a))......(i)  F=(q^2 /(4πε_0 r^2 ))  [   r=x].....(ii)  mg(x/(2a))=(q^2 /(4πε_0 x^2 ))  x=[((q^2 a)/(4πε_0 mg))]^(1/3)
$${F}=\frac{{q}^{\mathrm{2}} }{\mathrm{4}\pi\varepsilon_{\mathrm{0}} {r}^{\mathrm{2}} }\:\:\:\left[{q}_{\mathrm{1}} ={q}_{\mathrm{2}\:\:} \right] \\ $$$$\mathrm{sin}\:\theta=\frac{{x}}{\mathrm{2}{a}} \\ $$$$\mathrm{tan}\:\theta=\frac{{F}}{{mg}} \\ $$$${F}={mg}\mathrm{tan}\:\theta \\ $$$$\mathrm{tan}\:\theta\approx\mathrm{sin}\:\theta=\theta \\ $$$${F}={mg}\frac{{x}}{\mathrm{2}{a}}……\left({i}\right) \\ $$$${F}=\frac{{q}^{\mathrm{2}} }{\mathrm{4}\pi\varepsilon_{\mathrm{0}} {r}^{\mathrm{2}} }\:\:\left[\:\:\:{r}={x}\right]…..\left({ii}\right) \\ $$$${mg}\frac{{x}}{\mathrm{2}{a}}=\frac{{q}^{\mathrm{2}} }{\mathrm{4}\pi\varepsilon_{\mathrm{0}} {x}^{\mathrm{2}} } \\ $$$${x}=\left[\frac{{q}^{\mathrm{2}} {a}}{\mathrm{4}\pi\varepsilon_{\mathrm{0}} {mg}}\right]^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *