Question Number 80146 by Khyati last updated on 31/Jan/20

Answered by mr W last updated on 31/Jan/20

Commented by mr W last updated on 31/Jan/20
![say the origin is point O and the plane is P. the distance from O to the plane is h, which is constant. let′s look at an arbitrary rectangular axis system with origin at O and the axes intersect the plane at A,B,C with distances a,b,c to the origin. O, A, B, C build a tetrahedron. AB=(√(a^2 +b^2 )) BC=(√(b^2 +c^2 )) CA=(√(c^2 +a^2 )) the volume of the tetrahedron is V. V=(1/3)×((ab)/2)×c=((abc)/6) or V=(1/3)×Δ_(ABC) ×h with Δ_(ABC) =area ABC Δ_(ABC) =(1/2)×AB×AC×sin ∠BAC Δ_(ABC) =((√((a^2 +b^2 )(c^2 +a^2 )))/2)×sin ∠BAC BC^2 =AB^2 +AC^2 −2×AB×AC×cos ∠BAC b^2 +c^2 =a^2 +b^2 +c^2 +a^2 −2(√((a^2 +b^2 )(c^2 +a^2 )))×cos ∠BAC a^2 =(√((a^2 +b^2 )(c^2 +a^2 )))×cos ∠BAC ⇒cos ∠BAC=(a^2 /( (√((a^2 +b^2 )(c^2 +a^2 ))))) ⇒sin ∠BAC=((√((a^2 +b^2 )(c^2 +a^2 )−a^4 ))/( (√((a^2 +b^2 )(c^2 +a^2 ))))) ⇒sin ∠BAC=((√(b^2 c^2 +a^2 (b^2 +c^2 )))/( (√((a^2 +b^2 )(c^2 +a^2 ))))) Δ_(ABC) =((√((a^2 +b^2 )(c^2 +a^2 )))/2)×((√(b^2 c^2 +a^2 (b^2 +c^2 )))/( (√((a^2 +b^2 )(c^2 +a^2 ))))) ⇒Δ_(ABC) =((√(b^2 c^2 +a^2 (b^2 +c^2 )))/2) V=(1/3)×((√(b^2 c^2 +a^2 (b^2 +c^2 )))/2)×h=((h(√(b^2 c^2 +a^2 (b^2 +c^2 ))))/6) ⇒((h(√(b^2 c^2 +a^2 (b^2 +c^2 ))))/6)=((abc)/6) ⇒h^2 [b^2 c^2 +a^2 (b^2 +c^2 )]=a^2 b^2 c^2 ⇒(1/a^2 )+(1/b^2 )+(1/c^2 )=(1/h^2 ) since h is constant, we get also for an other system: ⇒(1/p^2 )+(1/q^2 )+(1/r^2 )=(1/h^2 ) therefore: ⇒(1/a^2 )+(1/b^2 )+(1/c^2 )=(1/p^2 )+(1/q^2 )+(1/r^2 )](https://www.tinkutara.com/question/Q80153.png)
Commented by mr W last updated on 31/Jan/20

Commented by TawaTawa last updated on 31/Jan/20
