Menu Close

Two-system-of-rectangular-axes-have-the-same-origin-If-a-plane-cuts-them-at-distance-a-b-c-and-p-q-r-respectively-then-prove-with-the-help-of-an-appropriate-diagram-that-1-a-2-1-b-2-




Question Number 80146 by Khyati last updated on 31/Jan/20
Two system of rectangular axes have  the same origin. If a plane cuts them  at distance a, b, c and p, q, r  respectively, then prove with the help  of an appropriate diagram that :  (1/a^2 ) + (1/b^2 ) + (1/c^2 ) = (1/p^2 ) + (1/q^2 ) + (1/r^2 )
Twosystemofrectangularaxeshavethesameorigin.Ifaplanecutsthematdistancea,b,candp,q,rrespectively,thenprovewiththehelpofanappropriatediagramthat:1a2+1b2+1c2=1p2+1q2+1r2
Answered by mr W last updated on 31/Jan/20
Commented by mr W last updated on 31/Jan/20
say the origin is point O and the plane  is P.   the distance from O to the plane is h,  which is constant.    let′s look at an arbitrary rectangular  axis system with origin at  O and the  axes intersect the plane at A,B,C  with distances a,b,c to the origin.    O, A, B, C build a tetrahedron.  AB=(√(a^2 +b^2 ))  BC=(√(b^2 +c^2 ))  CA=(√(c^2 +a^2 ))  the volume of the tetrahedron is V.  V=(1/3)×((ab)/2)×c=((abc)/6)  or  V=(1/3)×Δ_(ABC) ×h with Δ_(ABC) =area ABC    Δ_(ABC) =(1/2)×AB×AC×sin ∠BAC  Δ_(ABC) =((√((a^2 +b^2 )(c^2 +a^2 )))/2)×sin ∠BAC  BC^2 =AB^2 +AC^2 −2×AB×AC×cos ∠BAC  b^2 +c^2 =a^2 +b^2 +c^2 +a^2 −2(√((a^2 +b^2 )(c^2 +a^2 )))×cos ∠BAC  a^2 =(√((a^2 +b^2 )(c^2 +a^2 )))×cos ∠BAC  ⇒cos ∠BAC=(a^2 /( (√((a^2 +b^2 )(c^2 +a^2 )))))  ⇒sin ∠BAC=((√((a^2 +b^2 )(c^2 +a^2 )−a^4 ))/( (√((a^2 +b^2 )(c^2 +a^2 )))))  ⇒sin ∠BAC=((√(b^2 c^2 +a^2 (b^2 +c^2 )))/( (√((a^2 +b^2 )(c^2 +a^2 )))))  Δ_(ABC) =((√((a^2 +b^2 )(c^2 +a^2 )))/2)×((√(b^2 c^2 +a^2 (b^2 +c^2 )))/( (√((a^2 +b^2 )(c^2 +a^2 )))))  ⇒Δ_(ABC) =((√(b^2 c^2 +a^2 (b^2 +c^2 )))/2)  V=(1/3)×((√(b^2 c^2 +a^2 (b^2 +c^2 )))/2)×h=((h(√(b^2 c^2 +a^2 (b^2 +c^2 ))))/6)    ⇒((h(√(b^2 c^2 +a^2 (b^2 +c^2 ))))/6)=((abc)/6)  ⇒h^2 [b^2 c^2 +a^2 (b^2 +c^2 )]=a^2 b^2 c^2   ⇒(1/a^2 )+(1/b^2 )+(1/c^2 )=(1/h^2 )    since h is constant, we get also for  an other system:  ⇒(1/p^2 )+(1/q^2 )+(1/r^2 )=(1/h^2 )    therefore:  ⇒(1/a^2 )+(1/b^2 )+(1/c^2 )=(1/p^2 )+(1/q^2 )+(1/r^2 )
saytheoriginispointOandtheplaneisP.thedistancefromOtotheplaneish,whichisconstant.letslookatanarbitraryrectangularaxissystemwithoriginatOandtheaxesintersecttheplaneatA,B,Cwithdistancesa,b,ctotheorigin.O,A,B,Cbuildatetrahedron.AB=a2+b2BC=b2+c2CA=c2+a2thevolumeofthetetrahedronisV.V=13×ab2×c=abc6orV=13×ΔABC×hwithΔABC=areaABCΔABC=12×AB×AC×sinBACΔABC=(a2+b2)(c2+a2)2×sinBACBC2=AB2+AC22×AB×AC×cosBACb2+c2=a2+b2+c2+a22(a2+b2)(c2+a2)×cosBACa2=(a2+b2)(c2+a2)×cosBACcosBAC=a2(a2+b2)(c2+a2)sinBAC=(a2+b2)(c2+a2)a4(a2+b2)(c2+a2)sinBAC=b2c2+a2(b2+c2)(a2+b2)(c2+a2)ΔABC=(a2+b2)(c2+a2)2×b2c2+a2(b2+c2)(a2+b2)(c2+a2)ΔABC=b2c2+a2(b2+c2)2V=13×b2c2+a2(b2+c2)2×h=hb2c2+a2(b2+c2)6hb2c2+a2(b2+c2)6=abc6h2[b2c2+a2(b2+c2)]=a2b2c21a2+1b2+1c2=1h2sincehisconstant,wegetalsoforanothersystem:1p2+1q2+1r2=1h2therefore:1a2+1b2+1c2=1p2+1q2+1r2
Commented by mr W last updated on 31/Jan/20
An other way:  eqn. of plane in system 1:  (x/a)+(y/b)+(z/c)−1=0  distance from origin to plane is  h=((∣(0/a)+(0/b)+(0/c)−1∣)/( (√((1/a^2 )+(1/b^2 )+(1/c^2 )))))=(1/( (√((1/a^2 )+(1/b^2 )+(1/c^2 )))))    similarly in system 2 the  distance from origin to plane is  h=(1/( (√((1/p^2 )+(1/p^2 )+(1/r^2 )))))  since h is in both systems the same,  (1/( (√((1/a^2 )+(1/b^2 )+(1/c^2 )))))=(1/( (√((1/p^2 )+(1/p^2 )+(1/r^2 )))))  ⇒(1/a^2 )+(1/b^2 )+(1/c^2 )=(1/p^2 )+(1/p^2 )+(1/r^2 )
Anotherway:eqn.ofplaneinsystem1:xa+yb+zc1=0distancefromorigintoplaneish=0a+0b+0c11a2+1b2+1c2=11a2+1b2+1c2similarlyinsystem2thedistancefromorigintoplaneish=11p2+1p2+1r2sincehisinbothsystemsthesame,11a2+1b2+1c2=11p2+1p2+1r21a2+1b2+1c2=1p2+1p2+1r2
Commented by TawaTawa last updated on 31/Jan/20
Weldon sir, God bless you
Weldonsir,Godblessyou

Leave a Reply

Your email address will not be published. Required fields are marked *