Menu Close

u-n-1-2-u-n-show-that-u-n-1-u-n-and-u-n-u-n-1-have-same-sign-




Question Number 166648 by alcohol last updated on 24/Feb/22
u_(n+1)  = (√(2+u_n ))  show that u_(n+1) −u_n  and u_n −u_(n−1)   have same sign
$${u}_{{n}+\mathrm{1}} \:=\:\sqrt{\mathrm{2}+{u}_{{n}} } \\ $$$${show}\:{that}\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} \:{and}\:{u}_{{n}} −{u}_{{n}−\mathrm{1}} \\ $$$${have}\:{same}\:{sign} \\ $$$$ \\ $$
Answered by mr W last updated on 24/Feb/22
u_(n+1) =(√(u_n +2))≥0  at most one term can be zero, all other  terms are positive, i.e. u_(n+1) +u_n >0.  u_(n+1) ^2 =u_n +2  u_n ^2 =u_(n−1) +2  u_(n+1) ^2 −u_n ^2 =u_n −u_(n−1)   (u_(n+1) −u_n )(u_(n+1) +u_n )=u_n −u_(n−1)   ((u_n −u_(n−1) )/(u_(n+1) −u_n ))=u_(n+1) +u_n >0  ⇒u_(n+1) −u_n  and u_n −u_(n−1)  have same sign.
$${u}_{{n}+\mathrm{1}} =\sqrt{{u}_{{n}} +\mathrm{2}}\geqslant\mathrm{0} \\ $$$${at}\:{most}\:{one}\:{term}\:{can}\:{be}\:{zero},\:{all}\:{other} \\ $$$${terms}\:{are}\:{positive},\:{i}.{e}.\:{u}_{{n}+\mathrm{1}} +{u}_{{n}} >\mathrm{0}. \\ $$$${u}_{{n}+\mathrm{1}} ^{\mathrm{2}} ={u}_{{n}} +\mathrm{2} \\ $$$${u}_{{n}} ^{\mathrm{2}} ={u}_{{n}−\mathrm{1}} +\mathrm{2} \\ $$$${u}_{{n}+\mathrm{1}} ^{\mathrm{2}} −{u}_{{n}} ^{\mathrm{2}} ={u}_{{n}} −{u}_{{n}−\mathrm{1}} \\ $$$$\left({u}_{{n}+\mathrm{1}} −{u}_{{n}} \right)\left({u}_{{n}+\mathrm{1}} +{u}_{{n}} \right)={u}_{{n}} −{u}_{{n}−\mathrm{1}} \\ $$$$\frac{{u}_{{n}} −{u}_{{n}−\mathrm{1}} }{{u}_{{n}+\mathrm{1}} −{u}_{{n}} }={u}_{{n}+\mathrm{1}} +{u}_{{n}} >\mathrm{0} \\ $$$$\Rightarrow{u}_{{n}+\mathrm{1}} −{u}_{{n}} \:{and}\:{u}_{{n}} −{u}_{{n}−\mathrm{1}} \:{have}\:{same}\:{sign}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *