Menu Close

U-n-4-n-1-1-1-4-n-U-n-1-with-U-0-1-find-U-n-in-terms-of-n-question-Q173132-reposted-




Question Number 184401 by mr W last updated on 06/Jan/23
U_n  = ((((−4)^(n+1) −1)/(1−(−4)^n )))U_(n−1)  with U_0 =1  find U_(n )  in terms of n      (question Q173132 reposted)
Un=((4)n+111(4)n)Un1withU0=1findUnintermsofn(questionQ173132reposted)
Commented by Frix last updated on 06/Jan/23
Sir have you tried Q178468?
SirhaveyoutriedQ178468?
Commented by mr W last updated on 07/Jan/23
not yet sir.
notyetsir.
Commented by Frix last updated on 07/Jan/23
I tried but could not find any path...
Itriedbutcouldnotfindanypath
Answered by witcher3 last updated on 06/Jan/23
(U_n /U_(n−1) )=−((1−(−4)^(n+1) )/(1−(−4)^n )),a_n =1−(−4)^n   (U_k /U_(k−1) )=−(a_(k+1) /a_k )  Π_(k=1) ^n (U_k /U_(k−1) )=Π_(k=1) ^n −(a_(k+1) /a_k )⇔(U_n /U_0 )=(−1)^n .(a_(n+1) /a_1 )=(((−1)^n )/5)(1−(−4)^(n+1) )  ⇔u_n =(((−1)^n )/5)(1−(−4)^(n+1) )
UnUn1=1(4)n+11(4)n,an=1(4)nUkUk1=ak+1aknk=1UkUk1=nk=1ak+1akUnU0=(1)n.an+1a1=(1)n5(1(4)n+1)un=(1)n5(1(4)n+1)
Commented by witcher3 last updated on 06/Jan/23
y′re Welcom have a Nice Day
yreWelcomhaveaNiceDay
Commented by mr W last updated on 06/Jan/23
thanks! great solution!
thanks!greatsolution!
Answered by mr W last updated on 06/Jan/23
U_n  = ((((−4)^(n+1) −1)/(1−(−4)^n )))U_(n−1)   (U_n /((−4)^(n+1) −1))=−(U_(n−1) /((−4)^n −1))  (U_(n−1) /((−4)^n −1))=−(U_(n−2) /((−4)^(n−1) −1))  ......  (U_1 /((−4)^2 −1))=−(U_0 /((−4)^1 −1))  (U_n /((−4)^(n+1) −1))=(−1)^n (U_0 /((−4)^1 −1))=(((−1)^n )/(−5))  ⇒U_n =(((−1)^n ((−4)^(n+1) −1))/(−5))            =((4^(n+1) +(−1)^n )/5) ✓
Un=((4)n+111(4)n)Un1Un(4)n+11=Un1(4)n1Un1(4)n1=Un2(4)n11U1(4)21=U0(4)11Un(4)n+11=(1)nU0(4)11=(1)n5Un=(1)n((4)n+11)5=4n+1+(1)n5

Leave a Reply

Your email address will not be published. Required fields are marked *