Menu Close

U-n-is-a-sequence-wich-verify-n-N-U-n-U-n-1-1-n-1-calculate-U-n-interms-of-n-2-is-the-sequence-U-n-convergent-




Question Number 65488 by mathmax by abdo last updated on 30/Jul/19
U_n is a sequence wich verify  ∀n∈N^★   U_n  +U_(n+1) =(1/n)  1) calculate  U_n  interms of n  2) is the sequence U_n convergent?
UnisasequencewichverifynNUn+Un+1=1n1)calculateUnintermsofn2)isthesequenceUnconvergent?
Commented by mathmax by abdo last updated on 31/Jul/19
1) we have u_n +u_(n+1) =(1/n) ⇒Σ_(k=1) ^n (−1)^k (u_k +u_(k+1) ) =Σ_(k=1) ^n  (((−1)^k )/k)  ⇒−u_1 −u_2 +u_2  +u_3 −....+(−1)^(n−1) (u_(n−1)  +u_n )+(−1)^n (u_n +u_(n+1) )  =Σ_(k=1) ^n  (((−1)^k )/k) ⇒−u_1  +(−1)^n u_(n+1) =Σ_(k=1) ^n  (((−1)^k )/k) ⇒  (−1)^n u_(n+1) =Σ_(k=1) ^n  (((−1)^k )/k) +u_1  ⇒u_(n+1) =(−1)^n Σ_(k=1) ^n  (((−1)^k )/k)+(−1)^n u_1   ⇒u_n =(−1)^(n−1) Σ_(k=1) ^(n−1)  (((−1)^k )/k) +(−1)^(n−1) u_1   2) the sequence (−1)^(n−1)  is not convergente so u_n is not convergent  but we see that u_(2n) =−Σ_(k=1) ^(2n−1)  (((−1)^k )/k) −u_1 →ln(2)−u_1   u_(2n+1) =Σ_(k=1) ^(2n)  (((−1)^k )/k) +u_1 →u_1 −ln(2)
1)wehaveun+un+1=1nk=1n(1)k(uk+uk+1)=k=1n(1)kku1u2+u2+u3.+(1)n1(un1+un)+(1)n(un+un+1)=k=1n(1)kku1+(1)nun+1=k=1n(1)kk(1)nun+1=k=1n(1)kk+u1un+1=(1)nk=1n(1)kk+(1)nu1un=(1)n1k=1n1(1)kk+(1)n1u12)thesequence(1)n1isnotconvergentesounisnotconvergentbutweseethatu2n=k=12n1(1)kku1ln(2)u1u2n+1=k=12n(1)kk+u1u1ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *