Menu Close

U-n-is-a-sequence-wich-verify-U-n-U-n-1-1-n-2-1-find-U-n-interms-of-n-2-calculate-lim-n-U-n-




Question Number 65489 by mathmax by abdo last updated on 30/Jul/19
U_n  is a sequence wich verify  U_n  +U_(n+1) =(1/n^2 )  1) find U_n  interms of n  2) calculate lim_(n→+∞)  U_n
UnisasequencewichverifyUn+Un+1=1n21)findUnintermsofn2)calculatelimn+Un
Commented by mathmax by abdo last updated on 03/Aug/19
1) we have u_n +u_(n+1) =(1/n^2 ) ⇒Σ_(k=1) ^(n−1) (−1)^k (u_k +u_(k+1) )=Σ_(k=1) ^n  (((−1)^k )/k^2 )  ⇒−u_1 −u_2  +u_2  +u_3  −....+(−1)^(n−2) (u_(n−2)  +u_(n−1) )+  (−1)^(n−1) (u_(n−1)  +u_n )=Σ_(k=1) ^n  (((−1)^k )/k^2 ) ⇒  −u_1 +(−1)^(n−1) u_n =Σ_(k=1) ^n  (((−1)^k )/k^2 ) ⇒  (−1)^(n−1) u_n =Σ_(k=1) ^n  (((−1)^k )/k^2 ) +u_1  ⇒u_n =(−1)^(n−1) Σ_(k=1) ^n  (((−1)^k )/k^2 ) +(−1)^(n−1) u_1   2) u_n  is not convergent  but we see that  u_(2n) =−Σ_(k=1) ^(2n)  (((−1)^k )/k^2 ) −u_1 →−Σ_(k=1) ^∞  (((−1)^k )/k^2 )−u_1   u_(2n+1) =Σ_(k=1) ^(2n+1)  (((−1)^k )/k^2 ) +u_1 →Σ_(k=1) ^∞  (((−1)^k )/k^2 ) +u_1
1)wehaveun+un+1=1n2k=1n1(1)k(uk+uk+1)=k=1n(1)kk2u1u2+u2+u3.+(1)n2(un2+un1)+(1)n1(un1+un)=k=1n(1)kk2u1+(1)n1un=k=1n(1)kk2(1)n1un=k=1n(1)kk2+u1un=(1)n1k=1n(1)kk2+(1)n1u12)unisnotconvergentbutweseethatu2n=k=12n(1)kk2u1k=1(1)kk2u1u2n+1=k=12n+1(1)kk2+u1k=1(1)kk2+u1

Leave a Reply

Your email address will not be published. Required fields are marked *