Question Number 65489 by mathmax by abdo last updated on 30/Jul/19
$${U}_{{n}} \:{is}\:{a}\:{sequence}\:{wich}\:{verify}\:\:{U}_{{n}} \:+{U}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \\ $$
Commented by mathmax by abdo last updated on 03/Aug/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{u}_{{n}} +{u}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\Rightarrow\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} \left({u}_{{k}} +{u}_{{k}+\mathrm{1}} \right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} } \\ $$$$\Rightarrow−{u}_{\mathrm{1}} −{u}_{\mathrm{2}} \:+{u}_{\mathrm{2}} \:+{u}_{\mathrm{3}} \:−….+\left(−\mathrm{1}\right)^{{n}−\mathrm{2}} \left({u}_{{n}−\mathrm{2}} \:+{u}_{{n}−\mathrm{1}} \right)+ \\ $$$$\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({u}_{{n}−\mathrm{1}} \:+{u}_{{n}} \right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} }\:\Rightarrow \\ $$$$−{u}_{\mathrm{1}} +\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} }\:+{u}_{\mathrm{1}} \:\Rightarrow{u}_{{n}} =\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} }\:+\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {u}_{\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{u}_{{n}} \:{is}\:{not}\:{convergent}\:\:{but}\:{we}\:{see}\:{that} \\ $$$${u}_{\mathrm{2}{n}} =−\sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} }\:−{u}_{\mathrm{1}} \rightarrow−\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} }−{u}_{\mathrm{1}} \\ $$$${u}_{\mathrm{2}{n}+\mathrm{1}} =\sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}+\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} }\:+{u}_{\mathrm{1}} \rightarrow\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}^{\mathrm{2}} }\:+{u}_{\mathrm{1}} \\ $$