Menu Close

U-n-is-a-sequence-wich-verify-u-n-u-n-1-1-n-2-1-find-u-n-interms-of-n-2-find-lim-n-u-n-




Question Number 57847 by Abdo msup. last updated on 13/Apr/19
(U_n ) is a sequence wich verify   u_n +u_(n+1) =(1/n^2 )  1) find u_n  interms of n  2) find lim_(n→+∞)  u_n
(Un)isasequencewichverifyun+un+1=1n21)findunintermsofn2)findlimn+un
Commented by maxmathsup by imad last updated on 14/Apr/19
1) we have u_n +u_(n+1) =(1/n^2 )  ⇒Σ_(k=1) ^(n−1)  (−1)^k (u_k  +u_(k+1) )=Σ_(k=1) ^(n−1)  (((−1)^k )/k^2 ) ⇒  −(u_1  +u_2 )+u_2  +u_3 −(u_3  +u_4 ) +....(−1)^(n−1) (u_(n−1)  +u_n ) =Σ_(k=1) ^(n−1)  (((−1)^k )/k^2 ) ⇒  −u_1  +(−1)^(n−1)  u_n =Σ_(k=1) ^(n−1)  (((−1)^k )/k^2 ) ⇒ (−1)^(n−1) u_n =Σ_(k=1) ^(n−1)  (((−1)^k )/k^2 ) +u_1  ⇒  u_n =Σ_(k=1) ^(n−1)   (((−1)^(k−n+1) )/k^2 ) +(−1)^(n−1) u_1     with n≥2  2)the sequence (−1)^n u_1   is divergent  so (u_n ) diverges  but we can see   u_(2n) =−Σ_(k=1) ^(2n−1)  (((−1)^k )/k^2 ) −u_1   →−Σ_(k=1) ^∞    (((−1)^k )/k^2 ) −u_1  ⇒(u_(2n) ) converges also  u_(2n+1) =Σ_(k=1) ^(2n)   (((−1)^k )/k^2 ) +u_1 →Σ_(k=1) ^∞   (((−1)^k )/k^2 ) +u_1  ⇒u_(2n+1)  converges
1)wehaveun+un+1=1n2k=1n1(1)k(uk+uk+1)=k=1n1(1)kk2(u1+u2)+u2+u3(u3+u4)+.(1)n1(un1+un)=k=1n1(1)kk2u1+(1)n1un=k=1n1(1)kk2(1)n1un=k=1n1(1)kk2+u1un=k=1n1(1)kn+1k2+(1)n1u1withn22)thesequence(1)nu1isdivergentso(un)divergesbutwecanseeu2n=k=12n1(1)kk2u1k=1(1)kk2u1(u2n)convergesalsou2n+1=k=12n(1)kk2+u1k=1(1)kk2+u1u2n+1converges

Leave a Reply

Your email address will not be published. Required fields are marked *