Menu Close

U-n-is-a-sequence-wich-verify-U-n-U-n-1-n-for-all-integr-n-1-calculate-U-n-intrem-of-n-2-find-nature-of-the-serie-U-n-n-2-




Question Number 65193 by mathmax by abdo last updated on 26/Jul/19
U_n  is a sequence wich verify U_n +U_(n+1) =n for all integr n  1) calculate U_n  intrem of n  2) find nature of the serie Σ (U_n /n^2 )
UnisasequencewichverifyUn+Un+1=nforallintegrn1)calculateUnintremofn2)findnatureoftheserieΣUnn2
Commented by mathmax by abdo last updated on 26/Jul/19
1) we have U_n  +U_(n+1) =n  ⇒Σ_(k=0) ^(n−1) (−1)^k (U_k  +U_(k+1) ) =Σ_(k=0) ^(n−1) k(−1)^k   ⇒U_0 +U_1 −U_1 −U_2  +...(−1)^(n−2) (U_(n−2) +U_(n−1) )+(−1)^(n−1) (U_(n−1) +U_n )  =Σ_(k=0) ^(n−1)  k(−1)^k  ⇒  U_0   +(−1)^(n−1)  U_n =Σ_(k=0) ^(n−1) k(−1)^k  ⇒(−1)^(n−1)  U_n =Σ_(k=0) ^(n−1) k(−1)^k  −U_0   ⇒U_n =Σ_(k=0) ^(n−1) k(−1)^(k+n−1)  −(−1)^(n−1)  U_0  ⇒  U_n =(−1)^(n−1)  Σ_(k=0) ^(n−1) k(−1)^k  +(−1)^n  U_0   let p(x) =Σ_(k=0) ^(n−1) kx^k      we have Σ_(k=0) ^(n−1) x^k  =((1−x^n )/(1−x))     (x≠1) ⇒  Σ_(k=1) ^(n−1) kx^(k−1)  =(((x^n −1)/(x−1)))^′  =((nx^(n−1) (x−1)−(x^n −1)×1)/((x−1)^2 ))  =((nx^n −nx^(n−1) −x^n +1)/((x−1)^2 )) =(((n−1)x^n −nx^(n−1)  +1)/((x−1)^2 )) ⇒  Σ_(k=1) ^(n−1)  kx^k  =(((n−1)x^(n+1) −nx^n  +x)/((x−1)^2 )) ⇒  Σ_(k=0) ^(n−1)  k(−1)^k  =(((n−1)(−1)^(n+1) −n(−1)^n −1)/4)  =((−n(−1)^n  +(−1)^n −n(−1)^n −1)/4) =((−2n(−1)^n  +(−1)^n −1)/4) ⇒  U_n =(((−1)^(n−1) )/4){ −2n(−1)^n +(−1)^n −1}+(−1)^n  U_0   =−(1/4){−2n+1−(−1)^n }+(−1)^n  U_0  ⇒  U_n =(1/4){2n−1 +(−1)^n } +(−1)^n  U_0   2) Σ_(n=1) ^∞   (U_n /n^2 ) =Σ_(n=1) ^∞ (1/(2n)) −(1/4) Σ_(n=1) ^∞  (1/n^2 ) +(1/4)Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +Σ_(n=1) ^∞ (((−1)^n U_0 )/n^2 )  the serie Σ(1/(2n)) diverges ⇒Σ(U_n /n^2 ) diverges...
1)wehaveUn+Un+1=nk=0n1(1)k(Uk+Uk+1)=k=0n1k(1)kU0+U1U1U2+(1)n2(Un2+Un1)+(1)n1(Un1+Un)=k=0n1k(1)kU0+(1)n1Un=k=0n1k(1)k(1)n1Un=k=0n1k(1)kU0Un=k=0n1k(1)k+n1(1)n1U0Un=(1)n1k=0n1k(1)k+(1)nU0letp(x)=k=0n1kxkwehavek=0n1xk=1xn1x(x1)k=1n1kxk1=(xn1x1)=nxn1(x1)(xn1)×1(x1)2=nxnnxn1xn+1(x1)2=(n1)xnnxn1+1(x1)2k=1n1kxk=(n1)xn+1nxn+x(x1)2k=0n1k(1)k=(n1)(1)n+1n(1)n14=n(1)n+(1)nn(1)n14=2n(1)n+(1)n14Un=(1)n14{2n(1)n+(1)n1}+(1)nU0=14{2n+1(1)n}+(1)nU0Un=14{2n1+(1)n}+(1)nU02)n=1Unn2=n=112n14n=11n2+14n=1(1)nn2+n=1(1)nU0n2theserieΣ12ndivergesΣUnn2diverges

Leave a Reply

Your email address will not be published. Required fields are marked *