Menu Close

U-n-k-0-n-1-2k-1-find-a-eqivalent-of-U-n-n-




Question Number 144218 by Mathspace last updated on 23/Jun/21
U_n =Σ_(k=0) ^n (1/( (√(2k+1))))  find a eqivalent of U_n (n→∞)
$${U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{k}+\mathrm{1}}} \\ $$$${find}\:{a}\:{eqivalent}\:{of}\:{U}_{{n}} \left({n}\rightarrow\infty\right) \\ $$
Answered by ArielVyny last updated on 24/Jun/21
0≤k≤n→0≤2k≤2n                   →1≤2k+1≤2n+1                   →(1/( (√(2n+1))))≤(1/( (√(2k+1))))≤1                    →((n+1)/( (√(2n+1))))≤U_n ≤n+1
$$\mathrm{0}\leqslant{k}\leqslant{n}\rightarrow\mathrm{0}\leqslant\mathrm{2}{k}\leqslant\mathrm{2}{n} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\rightarrow\mathrm{1}\leqslant\mathrm{2}{k}+\mathrm{1}\leqslant\mathrm{2}{n}+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\rightarrow\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}}\leqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{k}+\mathrm{1}}}\leqslant\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\rightarrow\frac{{n}+\mathrm{1}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}}\leqslant{U}_{{n}} \leqslant{n}+\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *