Menu Close

u-v-C-such-that-u-v-1-and-uv-1-show-that-u-v-1-uv-R-




Question Number 126552 by mathocean1 last updated on 21/Dec/20
u ; v∈ C such that ∣u∣=∣v∣=1  and uv≠−1.  show that ((u+v)/(1+uv)) ∈ R.
u;vCsuchthatu∣=∣v∣=1anduv1.showthatu+v1+uvR.
Answered by Olaf last updated on 21/Dec/20
u = e^(iα) , v = e^(iβ)   ((u+v)/(1+uv)) = ((e^(iα) +e^(iβ) )/(1+e^(iα) e^(iβ) )) = ((e^(i((α+β)/2)) (e^(i((α−β)/2)) +e^(−i((α−β)/2)) ))/(e^(i((α+β)/2)) (e^(i((α+β)/2)) +e^(−i((α+β)/2)) )))  = ((cos(((α−β)/2)))/(cos(((α+β)/2)))) ∈R
u=eiα,v=eiβu+v1+uv=eiα+eiβ1+eiαeiβ=eiα+β2(eiαβ2+eiαβ2)eiα+β2(eiα+β2+eiα+β2)=cos(αβ2)cos(α+β2)R

Leave a Reply

Your email address will not be published. Required fields are marked *