Menu Close

ultimately-Q-149894-boils-down-to-finding-s-max-s-min-h-scos-pi-6-2-k-ssin-pi-6-2-r-2-




Question Number 150331 by ajfour last updated on 11/Aug/21
ultimately  Q.149894  boils   down to finding s_(max) , s_(min)  ∀      {h−scos (θ−(π/6))}^2   +{k−ssin (θ+(π/6))}^2 =r^2
$${ultimately}\:\:{Q}.\mathrm{149894}\:\:{boils}\: \\ $$$${down}\:{to}\:{finding}\:{s}_{{max}} ,\:{s}_{{min}} \:\forall \\ $$$$\:\:\:\:\left\{{h}−{s}\mathrm{cos}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)\right\}^{\mathrm{2}} \\ $$$$+\left\{{k}−{s}\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)\right\}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *