Un-1-2-n-show-that-we-have-p-n-N-U-n-p-n-p-n-1- Tinku Tara June 4, 2023 Vector Calculus 0 Comments FacebookTweetPin Question Number 102474 by pticantor last updated on 09/Jul/20 Un=(1+2)nshowthatwehavepn∈N/Un=pn+pn+1 Answered by ~blr237~ last updated on 09/Jul/20 observethat1Un=(−1)n(1−2)nandthatthereexistan,bn∈NsuchasUn=an+bn2and1Un=(−1)n(an−bn2)andUn2=U2n.So(Un+1Un)2=2+U2n+1U2n=2+2a2n(Un−1Un)2=−2+U2n+1U2n=−2+2a2nwehavean+1+bn+12=(1+2)(an+bn2)leadtoan+1=an+2bn.Sosuchasa1=1(odd),anisalwaysoddSothereexistcn∈N/an=2cn+1Then(Un+1Un)2=2+2(2c2n+1)=4(c2n+1)(Un−1Un)2=−2+2(2c2n+1)=4c2nByaddingthetwosquarerootUn=c2n+c2n+1takepn=c2n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-1-3-x-2-1-x-dx-Next Next post: find-f-a-0-a-arctan-a-2-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.