Question Number 164471 by SANOGO last updated on 17/Jan/22
$$\:{une}\:{primitive}\:{de}\:{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$$${puis}\:{la}\:{convergence}\:{de}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Answered by Ar Brandon last updated on 18/Jan/22
$${I}=\int\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$$$\begin{cases}{\mathrm{u}\left({x}\right)=\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}\\{{v}'\left({x}\right)=\mathrm{1}}\end{cases}\:\Rightarrow\begin{cases}{{u}'\left({x}\right)=\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} −\mathrm{1}}}\\{{v}\left({x}\right)={x}}\end{cases} \\ $$$${I}={x}\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)−\mathrm{2}\int\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{1}}{dx} \\ $$$$\:\:\:={x}\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)−\mathrm{2}\int\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{1}}\right){dx} \\ $$$$\:\:\:={x}\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)−\int\left(\mathrm{2}+\frac{\mathrm{1}}{{x}−\mathrm{1}}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right){dx} \\ $$$$\:\:\:={x}\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)−\mathrm{2}{x}+\mathrm{ln}\mid\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\mid \\ $$