Use-Abel-summation-to-evaluate-n-1-1-2n-1-2-n-1-2-ln-2-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 145827 by qaz last updated on 08/Jul/21 UseAbelsummationtoevaluate::∑∞n=11(2n−1)⋅2n=12ln(2+1) Answered by Ar Brandon last updated on 08/Jul/21 S=∑∞n=11(2n−1)2n=∑∞n=11(2n−1)(2)2n−1⋅2f(a)=∑∞n=1a2n−12n−1⇒f′(a)=∑∞n=1a2n−2=11−a2,∣a∣<1f(a)=12ln∣1+a1−a∣+C,f(0)=0⇒C=0f(a)=12ln(1+a1−a)S=12f(12)=122ln(2+12−1)=122ln(2+1)2=12ln(2+1) Answered by mathmax by abdo last updated on 09/Jul/21 S=∑n=1∞12n−1(12)n=12∑n=1∞12n−1(12)2n−1=12f(12)withf(x)=∑n=1∞x2n−12n−1⇒f′(x)=∑n=1∞x2n−2and∣x∣<1=∑n=0∞x2n=11−x2⇒f(x)=∫dx1−x2+k=12∫(11−x+11+x)dx+K=12log∣1+x1−x∣+Kf(0)=0=k⇒f(x)=12log∣1+x1−x∣⇒S=122log∣1+121−12∣=122log(2+12−1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-ordered-pair-of-x-y-given-x-y-0-2pi-if-3-sin-x-cos-y-1-and-5-sin-2-x-cos-2-y-5-Next Next post: Solve-1000-5-10-15-1000-x-mod-10- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.