Menu Close

Use-Abel-summation-to-evaluate-n-1-1-2n-1-2-n-1-2-ln-2-1-




Question Number 145827 by qaz last updated on 08/Jul/21
Use Abel summation to evaluate ::  Σ_(n=1) ^∞ (1/((2n−1)∙2^n ))=(1/( (√2)))ln((√2)+1)
UseAbelsummationtoevaluate::n=11(2n1)2n=12ln(2+1)
Answered by Ar Brandon last updated on 08/Jul/21
S=Σ_(n=1) ^∞ (1/((2n−1)2^n ))=Σ_(n=1) ^∞ (1/((2n−1)((√2))^(2n−1) ∙(√2)))  f(a)=Σ_(n=1) ^∞ (a^(2n−1) /(2n−1))⇒f ′(a)=Σ_(n=1) ^∞ a^(2n−2) =(1/(1−a^2 )), ∣a∣<1  f(a)=(1/2)ln∣((1+a)/(1−a))∣+C, f(0)=0⇒C=0  f(a)=(1/2)ln(((1+a)/(1−a)))  S=(1/( (√2)))f((1/( (√2))))=(1/(2(√2)))ln((((√2)+1)/( (√2)−1)))=(1/(2(√2)))ln((√2)+1)^2      =(1/( (√2)))ln((√2)+1)
S=n=11(2n1)2n=n=11(2n1)(2)2n12f(a)=n=1a2n12n1f(a)=n=1a2n2=11a2,a∣<1f(a)=12ln1+a1a+C,f(0)=0C=0f(a)=12ln(1+a1a)S=12f(12)=122ln(2+121)=122ln(2+1)2=12ln(2+1)
Answered by mathmax by abdo last updated on 09/Jul/21
S=Σ_(n=1) ^∞  (1/(2n−1))((1/2))^n  =(1/( (√2)))Σ_(n=1) ^∞  (1/(2n−1))((1/( (√2))))^(2n−1)   =(1/( (√2)))f((1/( (√2))))with f(x)=Σ_(n=1) ^∞  (x^(2n−1) /(2n−1)) ⇒f^′ (x)=Σ_(n=1) ^∞  x^(2n−2)    and ∣x∣<1  =Σ_(n=0) ^∞  x^(2n)  =(1/(1−x^2 )) ⇒f(x)=∫ (dx/(1−x^2 )) +k  =(1/2)∫((1/(1−x))+(1/(1+x)))dx +K=(1/2)log∣((1+x)/(1−x))∣ +K  f(0)=0=k ⇒f(x)=(1/2)log∣((1+x)/(1−x))∣ ⇒S=(1/(2(√2)))log∣((1+(1/( (√2))))/(1−(1/( (√2)))))∣  =(1/(2(√2)))log((((√2)+1)/( (√2)−1)))
S=n=112n1(12)n=12n=112n1(12)2n1=12f(12)withf(x)=n=1x2n12n1f(x)=n=1x2n2andx∣<1=n=0x2n=11x2f(x)=dx1x2+k=12(11x+11+x)dx+K=12log1+x1x+Kf(0)=0=kf(x)=12log1+x1xS=122log1+12112=122log(2+121)

Leave a Reply

Your email address will not be published. Required fields are marked *