Menu Close

use-beta-function-to-calculate-0-pi-sin-3-x-2-cosx-6-dx-




Question Number 100087 by mathmax by abdo last updated on 24/Jun/20
use beta function to calculate ∫_0 ^π  sin^3 x(2+cosx)^6  dx
usebetafunctiontocalculate0πsin3x(2+cosx)6dx
Commented by bemath last updated on 25/Jun/20
∫(cos^2 x−1)(2+cos x)^6  d(cos x)  ∫(z^2 −1)(2+z)^6  dz   ∫ z^2 (2+z)^6  dz−∫(2+z)^6  dz   [(1/7)z^2 (2+z)^7 −(1/(28))z(2+z)^8 +(1/(494))(2+z)^9 −(1/7)(2+z)^7 ]_1 ^(−1)   [ (1/7)+(1/(28))+(1/(494))−(1/7)]−[(3^7 /7)−(3^8 /(28))+(3^9 /(494))−(3^7 /7)]  = ((3^8 +1)/(28))+((1−3^9 )/(494)) ■
(cos2x1)(2+cosx)6d(cosx)(z21)(2+z)6dzz2(2+z)6dz(2+z)6dz[17z2(2+z)7128z(2+z)8+1494(2+z)917(2+z)7]11[17+128+149417][3773828+39494377]=38+128+139494◼
Answered by 1549442205 last updated on 26/Jun/20
F=−∫_0 ^π (1−cos^2 x)(2+cos x)^6 dcos x  =_(t=cos x  )   ∫(t^2 −1)(t+2)^6 dt=∫[t^2 (t+2)^6 ]d∫t−∫(t+2)^6 dt=A−B  A=∫t^2 (t^6 +12t^5 +60t^4 +160t^3 +240t^2 +192t+64)dt  =(t^9 /9)+((12t^8 )/8)+((60t^7 )/7)+((160t^6 )/6)+((240t^5 )/5)+((192t^4 )/4)+((64t^3 )/3)  B=(t^7 /7)+((12t^6 )/6)+((60t^5 )/5)+((160t^4 )/4)+((240t^3 )/3)+((192t^2 )/2)+64t  Hence,∫_0 ^π sin^3 x(2+cos x)^6 dx=(A−B)∣_1 ^(−1)   =((t^9 /9)+((12t^8 )/8)+((59t^7 )/7)+((148t^6 )/6)+((180t^5 )/5)+((32t^4 )/4)−((176t^3 )/3)−((192t^2 )/2)−64t)∣_1 ^(−1)   =((2053)/(126))−(−((17635)/(126)))=((19688)/(126))=((9844)/(63))≈156.25  The second way:  F=∫_0 ^π sin^3 x(2+cos x)^6 dx=∫_0 ^π sin^3 x(cos^6 x+12cos^5 x+60cos^4 x+160cos^3 x+240cos^2 x+192cos x+64)dx  Since,∫_0 ^π sin^(2m+1) xcos^(2n+1) xdx=  =∫_0 ^(π/2) sin^(2m+1) xcos^(2n+1) xdx+∫_(π/2) ^π  sin^(2m+1) x.cos^(2n+1) xdx  =_(x=t+(π/2)   ) ∫_0 ^(π/2) sin^(2m+1) x.cos^(2n+1) xdx−∫_0 ^(π/2) cos^(2m+1) t.sin^(2n+1) tdt  (1/2)B(m+1,n+1)−(1/2)B(n+1,m+1)=0(due to   the property of Beta function:B(p,q)=B(q,p)  and ,∫_0 ^π sin^(2m) xcos^(2n+1) xdx=  =∫_0 ^(π/2) sin^(2m) xcos^(2n+1) xdx+∫_(π/2) ^π  sin^(2m) x.cos^(2n+1) xdx  ==∫_0 ^(π/2) sin^(2m) xcos^(2n+1) xdx+∫_0 ^(π/2)  cos^(2m) x.sin^(2n+1) xdx=  (1/2)B(((2m+1)/2),n+1)+(1/2)B(n+1,((2m+1)/2))=B(((2m+1)/2),n+1),so  F=∫_0 ^π sin^3 x(cos^6 x+12cos^5 x+60cos^4 x+160cos^3 x+240cos^2 x+192cos x+64)dx  =B(2,(7/2))+60B(2,(5/2))+240B(2,(3/2))+64B(2,(1/2))  B(p,q)=((Γ(p).Γ(q))/(Γ(p+q))),so B(2,(7/2))=((Γ(2).Γ((7/2)))/(Γ(2+(7/2))))  Γ(2)=1,Γ((1/2))=(√π),Γ((3/2))=((√π)/2),Γ((5/2))=((3(√π))/4),Γ((7/2))=((15(√π))/8)  ⇒Γ(2+(7/2))=Γ(5+(1/2))=((3.5.7.9)/2^5 )(√π)=((945(√π))/(32))  ⇒B(2,(7/2))=((1.((15(√π))/8))/((945(√π))/(32)))=((12)/(189))=(4/(63))  B(2,(5/2))=((Γ(2).Γ((5/2)))/(Γ(2+(5/2))))=((1.((3(√π))/4))/(Γ(4+(1/2))))=(((3(√π))/4)/((3.5.7(√π))/(16)))=(4/(35))  B(2,(3/2))=((Γ(2).Γ((3/2)))/(Γ(2+(3/2))))=(((√π)/2)/(Γ(3+(1/2))))=(((√π)/2)/((3.5(√π))/8))=(4/(15))  B(2,(1/2))=((Γ(2).Γ((1/2)))/(Γ(2+(1/2))))=((√π)/((3(√π))/4))=(4/3).  Therefore,F=(4/(63))+60.(4/(35))+240.(4/(15))+64.(4/3)  =((9844)/(63))
F=0π(1cos2x)(2+cosx)6dcosx=t=cosx(t21)(t+2)6dt=[t2(t+2)6]dt(t+2)6dt=ABA=t2(t6+12t5+60t4+160t3+240t2+192t+64)dt=t99+12t88+60t77+160t66+240t55+192t44+64t33B=t77+12t66+60t55+160t44+240t33+192t22+64tHence,0πsin3x(2+cosx)6dx=(AB)11=(t99+12t88+59t77+148t66+180t55+32t44176t33192t2264t)11=2053126(17635126)=19688126=984463156.25Thesecondway:F=0πsin3x(2+cosx)6dx=0πsin3x(cos6x+12cos5x+60cos4x+160cos3x+240cos2x+192cosx+64)dxSince,0πsin2m+1xcos2n+1xdx==0π2sin2m+1xcos2n+1xdx+π2πsin2m+1x.cos2n+1xdx=x=t+π20π2sin2m+1x.cos2n+1xdx0π2cos2m+1t.sin2n+1tdt12B(m+1,n+1)12B(n+1,m+1)=0(duetothepropertyofBetafunction:B(p,q)=B(q,p)and,0πsin2mxcos2n+1xdx==0π2sin2mxcos2n+1xdx+π2πsin2mx.cos2n+1xdx==0π2sin2mxcos2n+1xdx+0π2cos2mx.sin2n+1xdx=12B(2m+12,n+1)+12B(n+1,2m+12)=B(2m+12,n+1),soF=0πsin3x(cos6x+12cos5x+60cos4x+160cos3x+240cos2x+192cosx+64)dx=B(2,72)+60B(2,52)+240B(2,32)+64B(2,12)B(p,q)=Γ(p).Γ(q)Γ(p+q),soB(2,72)=Γ(2).Γ(72)Γ(2+72)Γ(2)=1,Γ(12)=π,Γ(32)=π2,Γ(52)=3π4,Γ(72)=15π8Γ(2+72)=Γ(5+12)=3.5.7.925π=945π32B(2,72)=1.15π8945π32=12189=463B(2,52)=Γ(2).Γ(52)Γ(2+52)=1.3π4Γ(4+12)=3π43.5.7π16=435B(2,32)=Γ(2).Γ(32)Γ(2+32)=π2Γ(3+12)=π23.5π8=415B(2,12)=Γ(2).Γ(12)Γ(2+12)=π3π4=43.Therefore,F=463+60.435+240.415+64.43=984463
Commented by mathmax by abdo last updated on 25/Jun/20
thank you sir for this hardwork..
thankyousirforthishardwork..

Leave a Reply

Your email address will not be published. Required fields are marked *