Menu Close

Use-exponential-representation-of-sin-and-cos-to-show-that-a-sin-2-cos-2-1-b-cos-2-sin-2-cos2-c-2-sin-cos-2sin2-




Question Number 86461 by Rio Michael last updated on 28/Mar/20
Use exponential representation of sin θ and cos θ to show that  a) sin^2  θ + cos^2  θ = 1                b) cos^2 θ − sin^2 θ = cos2θ  c) 2 sinθ cosθ = 2sin2θ.
Useexponentialrepresentationofsinθandcosθtoshowthata)sin2θ+cos2θ=1b)cos2θsin2θ=cos2θc)2sinθcosθ=2sin2θ.
Answered by TANMAY PANACEA. last updated on 28/Mar/20
c)2sinθcosθ  =(2/i)(isinθ)(cosθ)  =(2/i)×(((e^(iθ) −e^(−iθ) )/2))(((e^(iθ) +e^(−iθ) )/2))  =(2/i)×(1/4)×(e^(i2θ) −e^(−i2θ) )  =(1/(2i))×(2isin2θ)=sin2θ
c)2sinθcosθ=2i(isinθ)(cosθ)=2i×(eiθeiθ2)(eiθ+eiθ2)=2i×14×(ei2θei2θ)=12i×(2isin2θ)=sin2θ
Answered by TANMAY PANACEA. last updated on 28/Mar/20
e^(iθ) =cosθ+isinθ     e^(−iθ) =cosθ−isinθ  cosθ=((e^(iθ) +e^(−iθ) )/2)      isinθ=((e^(iθ) −e^(−iθ) )/2)  a)cos^2 θ+sin^2 θ  =cos^2 θ−(isinθ)^2   =(((e^(iθ) +e^(−iθ) )/2))^2 −(((e^(iθ) −e^(−iθ) )/2))^2   =((4×e^(iθ) ×e^(−iθ) )/4)=1
eiθ=cosθ+isinθeiθ=cosθisinθcosθ=eiθ+eiθ2isinθ=eiθeiθ2a)cos2θ+sin2θ=cos2θ(isinθ)2=(eiθ+eiθ2)2(eiθeiθ2)2=4×eiθ×eiθ4=1
Commented by Rio Michael last updated on 28/Mar/20
thank you sir
thankyousir
Commented by peter frank last updated on 29/Mar/20
thank you sir
thankyousir
Answered by TANMAY PANACEA. last updated on 28/Mar/20
b)cos^2 θ−sin^2 θ  =cos^2 θ+(isinθ)^2   =(((e^(iθ) +e^(−iθ) )/2))^2 +(((e^(iθ) −e^(−iθ) )/2))^2   =((2(e^(i2θ) +e^(−i2θ) ))/4)=((2cos2θ)/2)=cos2θ
b)cos2θsin2θ=cos2θ+(isinθ)2=(eiθ+eiθ2)2+(eiθeiθ2)2=2(ei2θ+ei2θ)4=2cos2θ2=cos2θ

Leave a Reply

Your email address will not be published. Required fields are marked *