Menu Close

Use-gamma-function-to-prove-i-0-pi-4-sin-4-x-2x-dx-3-4-192-ii-0-pi-6-cos-4-3-sin-2-6-5pi-192-




Question Number 82560 by niroj last updated on 22/Feb/20
 Use gamma function to prove    (i) ∫_0 ^(π/4) sin^4 x 2x dx = ((3𝛑−4)/(192)).    (ii) ∫_0 ^(π/6)  cos^4 3𝛉 sin^2 6θ = ((5π)/(192)).
Usegammafunctiontoprove(i)0π4sin4x2xdx=3π4192.(ii)0π6cos43θsin26θ=5π192.
Answered by M±th+et£s last updated on 22/Feb/20
N.B:Γ(z+(1/2))=(((2z−1)!!)/2^z )(√π)    β=((Γ(x)Γ(y))/(Γ(x+y)))=∫_0 ^(π/2) cos^(2x−1) θ sin^(2x−1) θ dθ  I=∫_0 ^(π/6) cos^4 3θ sin^2 6θ dθ =^(θ→3θ)  (1/3)∫_0 ^(π/2) cos^4 θ sin^2 2θ dθ   =(4/3)∫_0 ^(π/2) cos^6 θ sin^2 θ dθ=(2/3)β((7/2),(3/2))  I=(2/3) ((Γ((7/2),(3/2)))/(Γ(5)))=(2/3) ((Γ(3+(1/2))Γ(1+(1/2)))/(Γ(5)))  =(2/3) (((((5!!)/2^3 )(√π) )(((1!!)/2^1 ) (√π) ))/(4!))=((2π)/3) (((((15)/8))((1/2)))/(24))  I=((5π)/(192))
N.B:Γ(z+12)=(2z1)!!2zπβ=Γ(x)Γ(y)Γ(x+y)=0π2cos2x1θsin2x1θdθI=0π6cos43θsin26θdθ=θ3θ130π2cos4θsin22θdθ=430π2cos6θsin2θdθ=23β(72,32)I=23Γ(72,32)Γ(5)=23Γ(3+12)Γ(1+12)Γ(5)=23(5!!23π)(1!!21π)4!=2π3(158)(12)24I=5π192

Leave a Reply

Your email address will not be published. Required fields are marked *