Menu Close

Use-Laplace-transform-to-solve-the-differential-equation-d-2-v-t-dt-2-6-dv-t-dt-8v-t-2u-t-when-v-0-1-and-v-0-2-




Question Number 184936 by MikeH last updated on 14/Jan/23
Use Laplace transform to solve the differential  equation   ((d^2 v(t))/dt^2 ) +6((dv(t))/dt) + 8v(t) = 2u(t)    when v(0) = 1 and v^• (0) = −2
UseLaplacetransformtosolvethedifferentialequationd2v(t)dt2+6dv(t)dt+8v(t)=2u(t)whenv(0)=1andv(0)=2
Answered by hmr last updated on 15/Jan/23
L{v′′} + 6L{v′} + 8L{v} = 2L{u}  →   (s^2  L{v} − sv(0) −v′(0))   + 6(sL{v} − v(0))  + 8L{v} = 2L{u}  →  (s^2  + 6s + 8)L{v}−s+2−6 = 2L{u}  →  (s^2  + 6s + 8)L{v} = 2L{u} + s + 4  →  L{v} = ((2L{u} + s + 4)/(s^2  + 6s + 8))  →  L{v} = ((2L{u} + (s + 4))/((s + 4)(s + 2)))  →  L{v} =  ((2L{u})/((s + 4)(s + 2))) + (1/(s + 2))  →  L{v} =  ((2L{u})/((s + 4)(s + 2))) + L{e^(−2t) }  →  L{v} =  ((4L{u})/(s + 4)) − ((2L{u})/(s + 2)) + L{e^(−2t) }  →  L{v} =  4L{e^(−4t) } L{u} − 2L{e^(−2t) } L{u}+ L{e^(−2t) }  Sorry that′s all I know.
L{v}+6L{v}+8L{v}=2L{u}(s2L{v}sv(0)v(0))+6(sL{v}v(0))+8L{v}=2L{u}(s2+6s+8)L{v}s+26=2L{u}(s2+6s+8)L{v}=2L{u}+s+4L{v}=2L{u}+s+4s2+6s+8L{v}=2L{u}+(s+4)(s+4)(s+2)L{v}=2L{u}(s+4)(s+2)+1s+2L{v}=2L{u}(s+4)(s+2)+L{e2t}L{v}=4L{u}s+42L{u}s+2+L{e2t}L{v}=4L{e4t}L{u}2L{e2t}L{u}+L{e2t}SorrythatsallIknow.
Commented by MikeH last updated on 15/Jan/23
thanks a lot
thanksalot
Commented by hmr last updated on 15/Jan/23
You′re Welcome
YoureWelcome
Commented by hmr last updated on 15/Jan/23
I edited the last line, It was wrong!
Ieditedthelastline,Itwaswrong!

Leave a Reply

Your email address will not be published. Required fields are marked *