Question Number 40366 by mondodotto@gmail.com last updated on 20/Jul/18
$$\boldsymbol{\mathrm{use}}\:\boldsymbol{\mathrm{newton}}\:\boldsymbol{\mathrm{raphson}}\:\boldsymbol{\mathrm{method}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{approximate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{root}} \\ $$$$\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\:\boldsymbol{\mathrm{correct}}\:\boldsymbol{\mathrm{to}}\:\mathrm{4}\:\boldsymbol{\mathrm{decimal}}\:\boldsymbol{\mathrm{places}} \\ $$$$\boldsymbol{\mathrm{perform}}\:\mathrm{3}\:\boldsymbol{\mathrm{iteration}}\:\boldsymbol{\mathrm{only}} \\ $$$$\boldsymbol{\mathrm{setting}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{{x}}=\mathrm{2} \\ $$
Commented by math khazana by abdo last updated on 20/Jul/18
$${let}\:{p}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{1}\:{and}\:{x}_{\mathrm{0}} =\mathrm{2}\:\Rightarrow \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} \:−\frac{{p}\left({x}_{{n}} \right)}{{p}^{'} \left({x}_{{n}} \right)}\:\Rightarrow{x}_{\mathrm{1}} ={x}_{\mathrm{0}} −\frac{{p}\left({x}_{\mathrm{0}} \right)}{{p}^{'} \left({x}_{\mathrm{0}} \right)} \\ $$$$=\mathrm{2}−\frac{\mathrm{3}}{\mathrm{4}}\:=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${x}_{\mathrm{2}} ={x}_{\mathrm{1}} −\frac{{p}\left({x}_{\mathrm{1}} \right)}{{p}^{'} \left({x}_{\mathrm{1}} \right)}\:=\frac{\mathrm{5}}{\mathrm{4}}\:−\frac{\left(\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}.\frac{\mathrm{5}}{\mathrm{4}}}=\frac{\mathrm{5}}{\mathrm{4}}\:−\frac{\mathrm{9}}{\mathrm{16}.\frac{\mathrm{5}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{5}}{\mathrm{4}}\:−\frac{\mathrm{9}}{\mathrm{40}}\:=\:\frac{\mathrm{41}}{\mathrm{40}} \\ $$$${x}_{\mathrm{3}} ={x}_{\mathrm{2}} \:−\frac{{p}\left({x}_{\mathrm{2}} \right)}{{p}^{'} \left({x}_{\mathrm{2}} \right)}\:=\:\frac{\mathrm{41}}{\mathrm{40}}\:−\frac{\left(\frac{\mathrm{41}}{\mathrm{40}}\right)^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}.\frac{\mathrm{41}}{\mathrm{40}}} \\ $$$$=\frac{\mathrm{41}}{\mathrm{40}}\:−\frac{\mathrm{41}^{\mathrm{2}} −\mathrm{40}^{\mathrm{2}} }{\mathrm{40}^{\mathrm{2}} \:.\frac{\mathrm{41}}{\mathrm{20}}}\:=\frac{\mathrm{41}}{\mathrm{40}}\:−\frac{\mathrm{81}}{\mathrm{40}^{\mathrm{2}} }\:.\frac{\mathrm{20}}{\mathrm{41}}\:=\frac{\mathrm{41}}{\mathrm{40}}\:−\frac{\mathrm{1620}}{\mathrm{41}.\mathrm{40}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{41}}{\mathrm{40}}\:−\frac{\mathrm{1620}}{\mathrm{41}.\mathrm{1600}}\:=\frac{\mathrm{41}}{\mathrm{40}}\:−\frac{\mathrm{162}}{\mathrm{41}.\mathrm{160}}\:=…. \\ $$