Menu Close

Use-polar-coordinate-to-find-lim-x-y-0-0-x-2-xy-2-x-2-y-2-




Question Number 187606 by otchereabdullai last updated on 19/Feb/23
 Use polar coordinate to find   lim(x,y)→(0,0) ((x^2 −xy^2 )/(x^2 +y^2 ))
$$\:{Use}\:{polar}\:{coordinate}\:{to}\:{find}\: \\ $$$${lim}\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)\:\frac{{x}^{\mathrm{2}} −{xy}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$
Answered by a.lgnaoui last updated on 19/Feb/23
we can try with Hopital  rule  lim_(x→a) ((f(x))/(g(x)))=lim_(x→a) ((f^′ (x))/(g^′ (x)))  with:     f(x)=x^2 −xy                    g(x)=x^2 +y^2
$${we}\:{can}\:{try}\:{with}\:{Hopital} \\ $$$${rule} \\ $$$${lim}_{{x}\rightarrow{a}} \frac{{f}\left({x}\right)}{{g}\left({x}\right)}={lim}_{{x}\rightarrow{a}} \frac{{f}^{'} \left({x}\right)}{{g}^{'} \left({x}\right)} \\ $$$${with}:\:\:\:\:\:{f}\left({x}\right)={x}^{\mathrm{2}} −{xy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{g}\left({x}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$ \\ $$
Answered by mr W last updated on 20/Feb/23
x=r cos θ  y=r sin θ  ((x^2 −xy^2 )/(x^2 +y^2 ))  =((r^2 cos^2  θ−r cos θ r^2 sin^2  θ)/(r^2 cos^2  θ+r^2 sin^2  θ))  =cos^2  θ−r cos θsin^2  θ  lim_(x→0,y→0) ((x^2 −xy^2 )/(x^2 +y^2 ))  =lim_(r→0,θ→0) (cos^2  θ−r cos θsin^2  θ)  =cos^2  0−0  =1
$${x}={r}\:\mathrm{cos}\:\theta \\ $$$${y}={r}\:\mathrm{sin}\:\theta \\ $$$$\frac{{x}^{\mathrm{2}} −{xy}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$=\frac{{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta−{r}\:\mathrm{cos}\:\theta\:{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$=\mathrm{cos}^{\mathrm{2}} \:\theta−{r}\:\mathrm{cos}\:\theta\mathrm{sin}^{\mathrm{2}} \:\theta \\ $$$$\underset{{x}\rightarrow\mathrm{0},{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −{xy}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$=\underset{{r}\rightarrow\mathrm{0},\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{cos}^{\mathrm{2}} \:\theta−{r}\:\mathrm{cos}\:\theta\mathrm{sin}^{\mathrm{2}} \:\theta\right) \\ $$$$=\mathrm{cos}^{\mathrm{2}} \:\mathrm{0}−\mathrm{0} \\ $$$$=\mathrm{1} \\ $$
Commented by otchereabdullai last updated on 20/Feb/23
Am much grateful prof W
$${Am}\:{much}\:{grateful}\:{prof}\:{W} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *