Menu Close

Use-polar-coordinate-to-find-lim-x-y-0-0-y-2-x-2-y-2-




Question Number 187611 by otchereabdullai last updated on 19/Feb/23
 Use polar coordinate to find  lim(x,y)→(0,0) (y^2 /(x^2 +y^2 ))
$$\:{Use}\:{polar}\:{coordinate}\:{to}\:{find} \\ $$$${lim}\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)\:\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$
Answered by mahdipoor last updated on 19/Feb/23
not exist   get y=0 and x→0 ⇒ lim=(0/(x^2 +0))=0  get y→0 and x=0 ⇒ lim=(y^2 /(0+y^2 ))=1  get (y=x)→0 ⇒ lim=(x^2 /(x^2 +x^2 ))=(1/2)  ...
$${not}\:{exist}\: \\ $$$${get}\:{y}=\mathrm{0}\:{and}\:{x}\rightarrow\mathrm{0}\:\Rightarrow\:{lim}=\frac{\mathrm{0}}{{x}^{\mathrm{2}} +\mathrm{0}}=\mathrm{0} \\ $$$${get}\:{y}\rightarrow\mathrm{0}\:{and}\:{x}=\mathrm{0}\:\Rightarrow\:{lim}=\frac{{y}^{\mathrm{2}} }{\mathrm{0}+{y}^{\mathrm{2}} }=\mathrm{1} \\ $$$${get}\:\left({y}={x}\right)\rightarrow\mathrm{0}\:\Rightarrow\:{lim}=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$… \\ $$
Answered by a.lgnaoui last updated on 19/Feb/23
I think that a rule of l hopital  can get a solutiin  f(x)=x^2 +y^2      g(x)=y^2   lim_(x→a) ((f/g)) =lim_(x→a) (((f′)/g^′ ))  with ((d(x^2 +y^2 ))/(d(x,y)))=?
$${I}\:{think}\:{that}\:{a}\:{rule}\:{of}\:{l}\:{hopital} \\ $$$${can}\:{get}\:{a}\:{solutiin} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:\:\:\:\:{g}\left({x}\right)={y}^{\mathrm{2}} \\ $$$${lim}_{{x}\rightarrow{a}} \left(\frac{{f}}{{g}}\right)\:={lim}_{{x}\rightarrow{a}} \left(\frac{{f}'}{{g}^{'} }\right) \\ $$$${with}\:\frac{{d}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{{d}\left({x},{y}\right)}=? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *