Menu Close

use-power-series-solution-method-to-solve-the-ODE-y-xy-0-




Question Number 99646 by 24224 Opiyo Kamuki last updated on 22/Jun/20
use power series solution method to solve the ODE  yโ€ฒโ€ฒโˆ’xy=0
\boldsymboluse\boldsymbolpower\boldsymbolseries\boldsymbolsolution\boldsymbolmethod\boldsymbolto\boldsymbolsolve\boldsymbolthe\boldsymbolODE\boldsymbolyโ€ณโˆ’\boldsymbolxy=0
Answered by MWSuSon last updated on 22/Jun/20
ฮฃ_(k=2) ^โˆž k(kโˆ’1)a_k x^(kโˆ’2) โˆ’xฮฃ_(k=0) ^โˆž a_k x^k =0  ฮฃ_(k=0) ^โˆž (k+1)(k+2)a_(k+2) x^k โˆ’ฮฃ_(k=0) ^โˆž a_k x^(k+1) =0  ฮฃ_(k=0) ^โˆž (k+1)(k+2)a_(k+2) x^k โˆ’ฮฃ_(k=1) ^โˆž a_(kโˆ’1) x^k =0  2a_2 +ฮฃ_(k=1) ^โˆž [(k+2)(k+1)a_(k+2) โˆ’a_(kโˆ’1) ]x^k =0  a_2 =0  recurrence relation for kโ‰ฅ1  a_(k+2) =(a_(kโˆ’1) /((k+2)(k+1)))  input values for k=1,2,3,4,5,...  and find a_k  interms of a_(0 ) and a_1
โˆ‘โˆžk=2k(kโˆ’1)akxkโˆ’2โˆ’xโˆ‘โˆžk=0akxk=0โˆ‘โˆžk=0(k+1)(k+2)ak+2xkโˆ’โˆ‘โˆžk=0akxk+1=0โˆ‘โˆžk=0(k+1)(k+2)ak+2xkโˆ’โˆ‘โˆžk=1akโˆ’1xk=02a2+โˆ‘โˆžk=1[(k+2)(k+1)ak+2โˆ’akโˆ’1]xk=0a2=0recurrencerelationforkโฉพ1ak+2=akโˆ’1(k+2)(k+1)inputvaluesfork=1,2,3,4,5,โ€ฆandfindakintermsofa0anda1
Answered by mathmax by abdo last updated on 22/Jun/20
y =ฮฃ_(n=0) ^โˆž  a_n x^n  โ‡’y^โ€ฒ  =ฮฃ_(n=1) ^โˆž  na_n x^(nโˆ’1)  โ‡’y^(โ€ฒโ€ฒ)  =ฮฃ_(n=2) ^โˆž  n(nโˆ’1)a_n x^(nโˆ’2)   =ฮฃ_(n=0) ^โˆž  (n+2)(n+1)a_(n+2)  x^n   eโ‡’ฮฃ_(n=0) ^โˆž  (n+1)(n+2)a_(n+2) x^n  โˆ’ฮฃ_(n=0) ^โˆž  a_n x^(n+1)  =0 โ‡’  ฮฃ_(n=0) ^โˆž (n+1)(n+2)a_(n+2) x^n  โˆ’ฮฃ_(n=1) ^โˆž  a_(nโˆ’1) x^(n  )  =0 โ‡’  2a_(2 )  +ฮฃ_(n=1) ^โˆž {(n+1)(n+2)a_(n+2) โˆ’a_(nโˆ’1) }x^n  =0 โ‡’  a_2 =0 and  a_(n+2) =(a_(nโˆ’1) /((n+1)(n+2)))  (nโ‰ฅ1) โ‡’a_3 =(a_0 /(2.3))  a_4 =(a_1 /(3.4))  ,    a_5 =(a_2 /(4.5)) ,.... โ‡’y(x) =a_0  +a_1 x +a_2 x^2  +a_3 x^3  +a_4 x^4  +...  =a_0  +a_1 x +(a_0 /6) x^3  +(a_1 /(12))x^4  +(a_2 /(20)) x^5  +...
y=โˆ‘n=0โˆžanxnโ‡’yโ€ฒ=โˆ‘n=1โˆžnanxnโˆ’1โ‡’yโ€ณ=โˆ‘n=2โˆžn(nโˆ’1)anxnโˆ’2=โˆ‘n=0โˆž(n+2)(n+1)an+2xneโ‡’โˆ‘n=0โˆž(n+1)(n+2)an+2xnโˆ’โˆ‘n=0โˆžanxn+1=0โ‡’โˆ‘n=0โˆž(n+1)(n+2)an+2xnโˆ’โˆ‘n=1โˆžanโˆ’1xn=0โ‡’2a2+โˆ‘n=1โˆž{(n+1)(n+2)an+2โˆ’anโˆ’1}xn=0โ‡’a2=0andan+2=anโˆ’1(n+1)(n+2)(nโฉพ1)โ‡’a3=a02.3a4=a13.4,a5=a24.5,โ€ฆ.โ‡’y(x)=a0+a1x+a2x2+a3x3+a4x4+โ€ฆ=a0+a1x+a06x3+a112x4+a220x5+โ€ฆ

Leave a Reply

Your email address will not be published. Required fields are marked *