Question Number 59102 by Tawa1 last updated on 04/May/19
$$\mathrm{use}\:\mathrm{remainder}\:\mathrm{theorem}\:\mathrm{to}\:\mathrm{factorize}\:\mathrm{completetly}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\:\:\:\:\:\mathrm{x}^{\mathrm{3}} \left(\mathrm{y}\:−\:\mathrm{z}\right)\:+\:\mathrm{y}^{\mathrm{3}} \left(\mathrm{z}\:−\:\mathrm{x}\right)\:+\:\mathrm{z}^{\mathrm{3}} \left(\mathrm{x}\:−\:\mathrm{y}\right) \\ $$
Answered by tanmay last updated on 04/May/19
$${E}=\mathrm{0}\:{when}\:{x}={y}\:{so}\:\left({x}−{y}\right){is}\:{factor}\:\left({E}={given}\:{expression}\right) \\ $$$${similarly}\:\left({y}−{z}\right)\:{and}\:\left({z}−{x}\right) \\ $$$${x}^{\mathrm{3}} \left({y}−{z}\right)+{y}^{\mathrm{3}} \left({z}−{x}\right)+{z}^{\mathrm{3}} \left({x}−{y}\right) \\ $$$$=\left({x}−{y}\right)\left({y}−{z}\right)\left({z}−{x}\right)\left({symmetric}\:{function}\:{degree}\:{one}\right) \\ $$$$={k}\left({x}−{y}\right)\left({y}−{z}\right)\left({z}−{x}\right)\left({x}+{y}+{z}\right) \\ $$$${now}\:{to}\:{find}\:{value}\:{of}\:{k} \\ $$$${in}\:{expression}\:{E}\:\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{3}} {y}=\mathrm{1} \\ $$$${in}\:{derived}\:{expression}\:{the}\:{coefficuent}\:{of}\: \\ $$$${x}^{\mathrm{3}} {y}=−{k}\:\:\left\{{kx}×{y}×−{x}×{x}\rightarrow−{kx}^{\mathrm{3}} {y}\right\} \\ $$$${so}\:{answer} \\ $$$$=\left(−\mathrm{1}\right)×\left({x}−{y}\right)\left({y}−{z}\right)\left({z}−{x}\right)\left({x}+{y}+{z}\right) \\ $$$$ \\ $$$${recheck} \\ $$$${x}^{\mathrm{3}} \left({y}−{z}\right)+{y}^{\mathrm{3}} \left({z}−{x}\right)+{z}^{\mathrm{3}} \left({x}−{y}\right) \\ $$$$={x}^{\mathrm{3}} \left({y}−{z}\right)+{yz}\left({y}^{\mathrm{2}} −{z}^{\mathrm{2}} \right)−{x}\left({y}^{\mathrm{3}} −{z}^{\mathrm{3}} \right) \\ $$$$=\left({y}−{z}\right)\left[{x}^{\mathrm{3}} +{y}^{\mathrm{2}} {z}+{yz}^{\mathrm{2}} −{xy}^{\mathrm{2}} −{xyz}−{xz}^{\mathrm{2}} \right) \\ $$$$=\left({y}−{z}\right)\left[−{x}\left({z}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)+{yz}\left({z}−{x}\right)+{y}^{\mathrm{2}} \left({z}−{x}\right)\right] \\ $$$$=\left({y}−{z}\right)\left({z}−{x}\right)\left[−{xz}−{x}^{\mathrm{2}} +{yz}+{y}^{\mathrm{2}} \right] \\ $$$$=\left({y}−{z}\right)\left({z}−{x}\right)\left[−{z}\left({x}−{y}\right)−\left({x}+{y}\right)\left({x}−{y}\right)\right] \\ $$$$=\left({x}−{y}\right)\left({y}−{z}\right)\left({z}−{x}\right)\left(−{x}−{y}−{z}\right) \\ $$$$=\left(−\mathrm{1}\right)×\left({x}−{y}\right)\left({y}−{z}\right)\left({z}+{x}\right)\left({x}+{y}+{z}\right) \\ $$
Commented by Tawa1 last updated on 21/Jul/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$