use-the-first-principle-y-ln-cos-x- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 43854 by peter frank last updated on 16/Sep/18 usethefirstprincipley=lncosx Answered by tanmay.chaudhury50@gmail.com last updated on 16/Sep/18 y+△y=lncos(x+△x)△y=12{ln(cos(x+△x)}−12{lncosx}△y=12ln{cos(x+△x)cosx}dydx=lim△x→0△y△x=12lim△x→012×ln{1+cos(x+△x)cosx−1}{cos(x+△x)cosx−1}×cos(x+△x)−cosxcosx×△xlett=cos(x+△x)cosx−1when△x→0t→0so12limt→0×ln(1+t)t×lim△x→02sin(x+△x2)sin((−△x2)cosx×(−△x2)×−212×1×2sinx×1−2cosx=12×−tanxrecheckd{12lncosx}dx=12×−tanx Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: SUCCESSFULLY-How-many-different-words-can-you-form-using-these-letters-so-that-no-two-same-letters-are-adjacent-Next Next post: given-that-a-b-3i-j-k-a-c-i-2j-k-find-i-c-a-ii-a-b-c-iii-a-b-a-c- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.