Menu Close

use-the-first-principle-y-ln-cos-x-




Question Number 43854 by peter frank last updated on 16/Sep/18
use the first principle y=ln (√(cos x))
usethefirstprincipley=lncosx
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Sep/18
y+△y=ln(√(cos(x+△x)))    △y=(1/2){ln(cos(x+△x)}−(1/2){lncosx}  △y=(1/2)ln{((cos(x+△x))/(cosx))}  (dy/dx)=lim_(△x→0)  ((△y)/(△x))  =(1/2)lim_(△x→0)  (1/2)×((ln{1+((cos(x+△x))/(cosx))−1})/({((cos(x+△x))/(cosx))−1}))×((cos(x+△x)−cosx)/(cosx×△x))  let t=((cos(x+△x))/(cosx))−1  when △x→0  t→0  so   (1/2)lim_(t→0)   ×((ln(1+t))/t)×lim_(△x→0)  ((2sin(x+((△x)/2))sin((−((△x)/2)))/(cosx×(((−△x)/2))×((−2)/)))  (1/2)×1×((2sinx×1)/(−2cosx))=(1/2)×−tanx  recheck  ((d{(1/2)lncosx})/dx)=(1/2)×−tanx
y+y=lncos(x+x)y=12{ln(cos(x+x)}12{lncosx}y=12ln{cos(x+x)cosx}dydx=limx0yx=12limx012×ln{1+cos(x+x)cosx1}{cos(x+x)cosx1}×cos(x+x)cosxcosx×xlett=cos(x+x)cosx1whenx0t0so12limt0×ln(1+t)t×limx02sin(x+x2)sin((x2)cosx×(x2)×212×1×2sinx×12cosx=12×tanxrecheckd{12lncosx}dx=12×tanx

Leave a Reply

Your email address will not be published. Required fields are marked *