Menu Close

Use-the-laplace-tranform-to-solve-d-2-y-dx-2-5-dy-dx-6y-e-x-for-y-0-and-dy-dx-1-when-x-0-




Question Number 98993 by Rio Michael last updated on 17/Jun/20
Use the laplace tranform to solve (d^2 y/dx^2 ) + 5(dy/dx) + 6y = e^(−x)   for  y = 0, and (dy/dx) = 1 when x = 0
Usethelaplacetranformtosolved2ydx2+5dydx+6y=exfory=0,anddydx=1whenx=0
Answered by mathmax by abdo last updated on 18/Jun/20
y^(′′)  +5y^′  +6y =e^(−x)     with  y(0)=0 and y^′ (0) =1  (e) ⇒L(y^(′′) )+5L(y^′ )+6L(y) =L(e^(−x) ) ⇒  x^2 L(y)−x y(0)−y^′ (0) +5(x L(y)−y(0))+6L(y) =L(e^(−x) ) ⇒  (x^2  +5x +6)L(y) −1 = L(e^(−x) )  we have L(e^(−x) ) =∫_0 ^∞  e^(−t)  e^(−xt)  dt  =∫_0 ^∞  e^(−(x+1)t)  dt =[−(1/(x+1))e^(−(x+1)t) ]_0 ^∞  =(1/(x+1))  (e)⇒(x^2  +5x+6)L(y) =1+(1/(x+1)) =((x+2)/(x+1)) ⇒L(y) =((x+2)/((x+1)(x^2  +5x+6))) ⇒  y =L^(−1) (((x+2)/((x+1)(x^2 +5x +6)))) let decompose f(x) =((x+2)/((x+1)(x^2  +5x+6)))  x^2  +5x +6 =0 →Δ =25−24 =1 ⇒x_1 =((−5+1)/2) =−2 and x_2 =((−5−1)/2) =−3 ⇒  f(x) =((x+2)/((x+1)(x+2)(x+3))) =(1/((x+1)(x+3))) =(1/2)((1/(x+1))−(1/(x+3))) ⇒  y(x)=L^(−1) (f) =(1/2)L^(−1) ((1/(x+1)))−(1/2)L^(−1) ((1/(x+3))) =(1/2)e^(−x)  −(1/2)e^(−3x)   the solution is y(x) =((e^(−x) −e^(−3x) )/2)
y+5y+6y=exwithy(0)=0andy(0)=1(e)L(y)+5L(y)+6L(y)=L(ex)x2L(y)xy(0)y(0)+5(xL(y)y(0))+6L(y)=L(ex)(x2+5x+6)L(y)1=L(ex)wehaveL(ex)=0etextdt=0e(x+1)tdt=[1x+1e(x+1)t]0=1x+1(e)(x2+5x+6)L(y)=1+1x+1=x+2x+1L(y)=x+2(x+1)(x2+5x+6)y=L1(x+2(x+1)(x2+5x+6))letdecomposef(x)=x+2(x+1)(x2+5x+6)x2+5x+6=0Δ=2524=1x1=5+12=2andx2=512=3f(x)=x+2(x+1)(x+2)(x+3)=1(x+1)(x+3)=12(1x+11x+3)y(x)=L1(f)=12L1(1x+1)12L1(1x+3)=12ex12e3xthesolutionisy(x)=exe3x2
Commented by Rio Michael last updated on 18/Jun/20
wow nice solution sir, but i have problems with  L(y′′) and L(y′′) the derivations
wownicesolutionsir,butihaveproblemswithL(y)andL(y)thederivations
Commented by abdomathmax last updated on 18/Jun/20
you must use a table of formula for laplace
youmustuseatableofformulaforlaplace

Leave a Reply

Your email address will not be published. Required fields are marked *