using-cayley-hamilton-theorem-what-is-the-inverse-of-matrix-A-0-1-1-1-2-2-0-1-1- Tinku Tara June 4, 2023 Matrices and Determinants 0 Comments FacebookTweetPin Question Number 98661 by bemath last updated on 15/Jun/20 usingcayley−hamiltontheoremwhatistheinverseofmatrixA=[01−112201−1] Commented by john santu last updated on 15/Jun/20 wefirstcomputethecharacteristicequation∣A−λI∣=0[−λ1−112−λ201−1−λ]=0=−λ{(2−λ)(−1−λ)−2}−(−1−λ)−1=λ{λ2−λ−4}+1+λ−1=λ3−λ2−3λthecayley−hamiltontheoremstatesthatamatrixsatisfiesitsowncharacteristicequation⇒A3−A2−3A=0A(A2−A−3I)=0⇔I=13A(A−I)⇔A−1=13(A−I)⇔A−1=13[−11−111201−2] Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-164193Next Next post: let-give-f-x-1-2x-2-3x-1-1-find-f-n-x-2-find-f-n-0-3-if-f-x-a-n-x-n-calculate-the-sequence-a-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.