Menu Close

using-Frobenius-method-x-2-y-6xy-4x-2-6-y-0-




Question Number 126960 by bramlexs22 last updated on 25/Dec/20
 using Frobenius method  x^2 y′′ +6xy′ +(4x^2 +6)y = 0
usingFrobeniusmethodx2y+6xy+(4x2+6)y=0
Commented by liberty last updated on 26/Dec/20
put y=e^(rx)  → { ((y′=re^(rx) )),((y′′=r^2 e^(rx) )) :}  ⇔ x^2 (r^2  e^(rx)  )+ 6x(r e^(rx) )+(4x^2 +6)e^(rx)  = 0  ⇔ e^(rx)  (x^2 r^2  +6xr +(4x^2 +6)) = 0  ⇒ x^2  r^2  + 6xr + (4x^2 +6) = 0        r = ((−6x±(√(36x^2 −4x^2 (4x^2 +6))))/(2x^2 ))        r= ((−6x ± 2x(√(3−4x^2 )))/(2x^2 )) = ((−3±(√(3−4x^2 )))/x)       r_1 =((−3+(√(3−4x^2 )))/x) ∧ r_2 = ((−3−(√(3−4x^2 )))/x)  general solution   ∴ y = C_1 e^(−3+(√(3−4x^2 )))  + C_2 e^(−3−(√(3−4x^2 )))  .
puty=erx{y=rerxy=r2erxx2(r2erx)+6x(rerx)+(4x2+6)erx=0erx(x2r2+6xr+(4x2+6))=0x2r2+6xr+(4x2+6)=0r=6x±36x24x2(4x2+6)2x2r=6x±2x34x22x2=3±34x2xr1=3+34x2xr2=334x2xgeneralsolutiony=C1e3+34x2+C2e334x2.
Commented by bramlexs22 last updated on 26/Dec/20
yes..thanks
yes..thanks
Answered by Dwaipayan Shikari last updated on 26/Dec/20
y=e^(λx)   λ^2 x^2 e^(λx) +6λe^(λx) +(4x^2 +6)e^(λx) =0  ⇒λ^2 x^2 +6λx+4x^2 +6=0⇒λ=((−6x±(√(36x^2 −16x^4 −24x^2 )))/(2x^2 ))  λ=−(3/x)±(√((3/x^2 )−4))  y=Λe^(−(3/x)+(√((3/x^2 )−4))) +Φe^(−(3/x)−(√((3/x^2 )−4)))
y=eλxλ2x2eλx+6λeλx+(4x2+6)eλx=0λ2x2+6λx+4x2+6=0λ=6x±36x216x424x22x2λ=3x±3x24y=Λe3x+3x24+Φe3x3x24

Leave a Reply

Your email address will not be published. Required fields are marked *