Menu Close

using-properties-of-determinats-prove-that-yz-y-2-yz-z-2-yz-x-2-xz-xz-z-2-xy-xy-yz-zx-2-x-2-xy-y-2-xy-xy-




Question Number 172014 by Mikenice last updated on 23/Jun/22
using properties of determinats  prove that  [−yz      y^2 +yz       z^2 +yz]  [x^2 +xz   −xz          z^2 +xy] =(xy+yz+zx)^2      x^2 +xy     y^2 +xy        −xy]
$${using}\:{properties}\:{of}\:{determinats} \\ $$$${prove}\:{that} \\ $$$$\left[−{yz}\:\:\:\:\:\:{y}^{\mathrm{2}} +{yz}\:\:\:\:\:\:\:{z}^{\mathrm{2}} +{yz}\right] \\ $$$$\left[{x}^{\mathrm{2}} +{xz}\:\:\:−{xz}\:\:\:\:\:\:\:\:\:\:{z}^{\mathrm{2}} +{xy}\right]\:=\left({xy}+{yz}+{zx}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\left.\:{x}^{\mathrm{2}} +{xy}\:\:\:\:\:{y}^{\mathrm{2}} +{xy}\:\:\:\:\:\:\:\:−{xy}\right] \\ $$
Commented by Mikenice last updated on 23/Jun/22
okay sir
$${okay}\:{sir} \\ $$
Commented by som(math1967) last updated on 23/Jun/22
I think question is wrong
$${I}\:{think}\:{question}\:{is}\:\boldsymbol{{wrong}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *