Menu Close

using-residue-theorem-evaluate-z-3-zsecz-z-1-2-dz-




Question Number 147035 by rs4089 last updated on 17/Jul/21
using residue theorem  evaluate  ∫_(∣z∣=3) ((zsecz)/((z−1)^2 ))dz
usingresiduetheoremevaluatez∣=3zsecz(z1)2dz
Answered by mathmax by abdo last updated on 17/Jul/21
Ψ=∫_(∣z∣=3)     (z/(cosz(z−1)^2 ))dz ⇒Ψ=2iπ Res(f,1)  Res(f,1) =lim_(z→1) (1/((2−1)!)){(z−1)^2 f(z)}^((1))   =lim_(z→1) {(z/(cosz))}^((1))  =lim_(z→1)    ((cosz+zsinz)/(cos^2 z))=((cos(1)+sin(1))/(cos^2 (1)))  ⇒Ψ=2iπ×((cos(1)+sin(1))/(cos^2 (1)))
Ψ=z∣=3zcosz(z1)2dzΨ=2iπRes(f,1)Res(f,1)=limz11(21)!{(z1)2f(z)}(1)=limz1{zcosz}(1)=limz1cosz+zsinzcos2z=cos(1)+sin(1)cos2(1)Ψ=2iπ×cos(1)+sin(1)cos2(1)
Answered by Olaf_Thorendsen last updated on 17/Jul/21
Ω = ∫_(∣z∣=3) ((zsecz)/((z−1)^2 )) dz  Ω = 2iπRes_1 f  Ω = 2iπ×(1/((2−1)!)).lim_(z→1) (∂^(2−1) /∂z^(2−1) )(z−1)^2 f(z)  Ω = 2iπ.lim_(z→1) (∂/∂z)(zsecz)  Ω = 2iπ.lim_(z→1) (((cosz+zsinz)/(cos^2 z)))  Ω = 2iπ(((cos(1)+sin(1))/(cos^2 (1))))
Ω=z∣=3zsecz(z1)2dzΩ=2iπRes1fΩ=2iπ×1(21)!.limz121z21(z1)2f(z)Ω=2iπ.limz1z(zsecz)Ω=2iπ.limz1(cosz+zsinzcos2z)Ω=2iπ(cos(1)+sin(1)cos2(1))

Leave a Reply

Your email address will not be published. Required fields are marked *