Menu Close

Using-Taylor-s-theorem-prove-that-x-x-3-6-lt-sin-x-lt-x-x-3-6-x-5-120-for-x-gt-0-




Question Number 171136 by pablo1234523 last updated on 08/Jun/22
Using Taylor′s theorem, prove that  x−(x^3 /6)<sin x<x−(x^3 /6)+(x^5 /(120))   for x>0
$$\mathrm{Using}\:\mathrm{Taylor}'\mathrm{s}\:\mathrm{theorem},\:\mathrm{prove}\:\mathrm{that} \\ $$$${x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}<\mathrm{sin}\:{x}<{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+\frac{{x}^{\mathrm{5}} }{\mathrm{120}}\:\:\:\mathrm{for}\:{x}>\mathrm{0} \\ $$
Commented by pablo1234523 last updated on 08/Jun/22
Commented by pablo1234523 last updated on 08/Jun/22
↑ example
$$\uparrow\:\mathrm{example} \\ $$
Commented by pablo1234523 last updated on 08/Jun/22
Commented by pablo1234523 last updated on 08/Jun/22
θx>0  what does it imply about cos (θx)?
$$\theta{x}>\mathrm{0} \\ $$$$\mathrm{what}\:\mathrm{does}\:\mathrm{it}\:\mathrm{imply}\:\mathrm{about}\:\mathrm{cos}\:\left(\theta{x}\right)? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *