Menu Close

using-taylors-expansion-find-find-the-value-of-a-tan45-1-b-sin30-1-




Question Number 46534 by peter frank last updated on 28/Oct/18
using taylors expansion  find find the value of  a)tan45° 1′   b)sin30° 1′
usingtaylorsexpansionfindfindthevalueofa)tan45°1b)sin30°1
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Oct/18
a)y=f(x)  when x changes to x+△x  y changes to y+△y  here f(x)=tanx    y=tanx  (dy/dx)=sec^2 x  (dy/dx)=((△y)/(△x))  △y=(dy/dx)△x  △y=sec^2 x.△x  △x=1^′ =((1/(60)))^o =(π/(180))×(1/(60))=0.00029  △y=sec^2 45^o ×0.00029=0.00058  so value of tan(45^o 1′)=1+0.00058=1.00058    b)△y=(dy/dx)△x  y=sinx   (dy/dx)=cosx  △y=cosx.△x  △y=cos30^o ×0.00029=((√3)/2)×0.00029=0.00025  so sin(30^o 1′)=0.5+0.00025=0.50025
a)y=f(x)whenxchangestox+xychangestoy+yheref(x)=tanxy=tanxdydx=sec2xdydx=yxy=dydxxy=sec2x.xx=1=(160)o=π180×160=0.00029y=sec245o×0.00029=0.00058sovalueoftan(45o1)=1+0.00058=1.00058b)y=dydxxy=sinxdydx=cosxy=cosx.xy=cos30o×0.00029=32×0.00029=0.00025sosin(30o1)=0.5+0.00025=0.50025

Leave a Reply

Your email address will not be published. Required fields are marked *