Menu Close

using-the-1st-principle-find-the-derivative-of-y-ax-b-n-




Question Number 25845 by NECx last updated on 15/Dec/17
using the 1st principle find the  derivative of        y=(ax+b)^n
usingthe1stprinciplefindthederivativeofy=(ax+b)n
Answered by ajfour last updated on 15/Dec/17
(dy/dx)=lim_(h→0) (((ax+ah+b)^n −(ax+b)^n )/h)      =lim_(h→0) ((ah)/h)×lim_(h→0) [(ax+ah+b)^(n−1) +        (ax+ah+b)^(n−2) (ax+b)+        (ax+ah+b)^(n−3) (ax+b)^2 +...     .....+ (ax+ah+b)(ax+b)^(n−2) +         (ax+b)^(n−1) ]      ((d(ax+b)^n )/dx)=an(ax+b)^(n−1)  .
dydx=limh0(ax+ah+b)n(ax+b)nh=limh0ahh×limh0[(ax+ah+b)n1+(ax+ah+b)n2(ax+b)+(ax+ah+b)n3(ax+b)2+..+(ax+ah+b)(ax+b)n2+(ax+b)n1]d(ax+b)ndx=an(ax+b)n1.
Commented by NECx last updated on 16/Dec/17
i still dont get how you removed  lim_(x→0)  ((ah)/h)
istilldontgethowyouremovedlimx0ahh
Commented by ajfour last updated on 16/Dec/17
x^n −y^n =(x−y)(x^(n−1) +x^(n−2) y+..                      ...+xy^(n−2) +y^(n−1) )  so in your question we have    x^n =(ax+ah+b)^n   and   y^n =(ax+b)^n   so   (x−y)=ah.
xnyn=(xy)(xn1+xn2y+..+xyn2+yn1)soinyourquestionwehavexn=(ax+ah+b)nandyn=(ax+b)nso(xy)=ah.
Answered by rita1608 last updated on 15/Dec/17
((lim)/(h→0))  (((a(x+h)+b)^n −(ax+b)^n )/h)  =((lim)/(h→0))   (((ax+ah+b)^n −(ax+b)^n )/h)  =((lim)/(h→0)) (((ax+b)^n −(ax+b)^n )/h)=0
limh0(a(x+h)+b)n(ax+b)nh=limh0(ax+ah+b)n(ax+b)nh=limh0(ax+b)n(ax+b)nh=0
Commented by rita1608 last updated on 16/Dec/17
thanks for the correction
thanksforthecorrection
Commented by prakash jain last updated on 15/Dec/17
In the last step you substituted  h=0 in numerator and left  h in denominator. This is not correct.  with this you will get 0 for every  derivative.
Inthelaststepyousubstitutedh=0innumeratorandlefthindenominator.Thisisnotcorrect.withthisyouwillget0foreveryderivative.

Leave a Reply

Your email address will not be published. Required fields are marked *