Menu Close

using-the-1st-principle-find-the-derivative-of-y-ax-b-n-




Question Number 25845 by NECx last updated on 15/Dec/17
using the 1st principle find the  derivative of        y=(ax+b)^n
$${using}\:{the}\:\mathrm{1}{st}\:{principle}\:{find}\:{the} \\ $$$${derivative}\:{of}\: \\ $$$$\:\:\:\:\:{y}=\left({ax}+{b}\right)^{{n}} \\ $$
Answered by ajfour last updated on 15/Dec/17
(dy/dx)=lim_(h→0) (((ax+ah+b)^n −(ax+b)^n )/h)      =lim_(h→0) ((ah)/h)×lim_(h→0) [(ax+ah+b)^(n−1) +        (ax+ah+b)^(n−2) (ax+b)+        (ax+ah+b)^(n−3) (ax+b)^2 +...     .....+ (ax+ah+b)(ax+b)^(n−2) +         (ax+b)^(n−1) ]      ((d(ax+b)^n )/dx)=an(ax+b)^(n−1)  .
$$\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({ax}+{ah}+{b}\right)^{{n}} −\left({ax}+{b}\right)^{{n}} }{{h}} \\ $$$$\:\:\:\:=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ah}}{{h}}×\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\left({ax}+{ah}+{b}\right)^{{n}−\mathrm{1}} +\right. \\ $$$$\:\:\:\:\:\:\left({ax}+{ah}+{b}\right)^{{n}−\mathrm{2}} \left({ax}+{b}\right)+ \\ $$$$\:\:\:\:\:\:\left({ax}+{ah}+{b}\right)^{{n}−\mathrm{3}} \left({ax}+{b}\right)^{\mathrm{2}} +… \\ $$$$\:\:\:…..+\:\left({ax}+{ah}+{b}\right)\left({ax}+{b}\right)^{{n}−\mathrm{2}} + \\ $$$$\left.\:\:\:\:\:\:\:\left({ax}+{b}\right)^{{n}−\mathrm{1}} \right] \\ $$$$\:\:\:\:\frac{{d}\left({ax}+{b}\right)^{{n}} }{{dx}}={an}\left({ax}+{b}\right)^{{n}−\mathrm{1}} \:. \\ $$
Commented by NECx last updated on 16/Dec/17
i still dont get how you removed  lim_(x→0)  ((ah)/h)
$${i}\:{still}\:{dont}\:{get}\:{how}\:{you}\:{removed} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{ah}}{{h}} \\ $$
Commented by ajfour last updated on 16/Dec/17
x^n −y^n =(x−y)(x^(n−1) +x^(n−2) y+..                      ...+xy^(n−2) +y^(n−1) )  so in your question we have    x^n =(ax+ah+b)^n   and   y^n =(ax+b)^n   so   (x−y)=ah.
$${x}^{{n}} −{y}^{{n}} =\left({x}−{y}\right)\left({x}^{{n}−\mathrm{1}} +{x}^{{n}−\mathrm{2}} {y}+..\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…+{xy}^{{n}−\mathrm{2}} +{y}^{{n}−\mathrm{1}} \right) \\ $$$${so}\:{in}\:{your}\:{question}\:{we}\:{have} \\ $$$$\:\:{x}^{{n}} =\left({ax}+{ah}+{b}\right)^{{n}} \\ $$$${and}\:\:\:{y}^{{n}} =\left({ax}+{b}\right)^{{n}} \\ $$$${so}\:\:\:\left({x}−{y}\right)={ah}. \\ $$
Answered by rita1608 last updated on 15/Dec/17
((lim)/(h→0))  (((a(x+h)+b)^n −(ax+b)^n )/h)  =((lim)/(h→0))   (((ax+ah+b)^n −(ax+b)^n )/h)  =((lim)/(h→0)) (((ax+b)^n −(ax+b)^n )/h)=0
$$\frac{{lim}}{{h}\rightarrow\mathrm{0}}\:\:\frac{\left({a}\left({x}+{h}\right)+{b}\right)^{{n}} −\left({ax}+{b}\right)^{{n}} }{{h}} \\ $$$$=\frac{{lim}}{{h}\rightarrow\mathrm{0}}\:\:\:\frac{\left({ax}+{ah}+{b}\right)^{{n}} −\left({ax}+{b}\right)^{{n}} }{{h}} \\ $$$$=\frac{{lim}}{{h}\rightarrow\mathrm{0}}\:\frac{\left({ax}+{b}\right)^{{n}} −\left({ax}+{b}\right)^{{n}} }{{h}}=\mathrm{0} \\ $$
Commented by rita1608 last updated on 16/Dec/17
thanks for the correction
$${thanks}\:{for}\:{the}\:{correction}\: \\ $$$$ \\ $$
Commented by prakash jain last updated on 15/Dec/17
In the last step you substituted  h=0 in numerator and left  h in denominator. This is not correct.  with this you will get 0 for every  derivative.
$$\mathrm{In}\:\mathrm{the}\:\mathrm{last}\:\mathrm{step}\:\mathrm{you}\:\mathrm{substituted} \\ $$$${h}=\mathrm{0}\:\mathrm{in}\:\mathrm{numerator}\:\mathrm{and}\:\mathrm{left} \\ $$$${h}\:\mathrm{in}\:\mathrm{denominator}.\:\mathrm{This}\:\mathrm{is}\:\mathrm{not}\:\mathrm{correct}. \\ $$$$\mathrm{with}\:\mathrm{this}\:\mathrm{you}\:\mathrm{will}\:\mathrm{get}\:\mathrm{0}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{derivative}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *